1,004 research outputs found
On the effect of rotation on magnetohydrodynamic turbulence at high magnetic Reynolds number
This article is focused on the dynamics of a rotating electrically conducting
fluid in a turbulent state. As inside the Earth's core or in various industrial
processes, a flow is altered by the presence of both background rotation and a
large scale magnetic field. In this context, we present a set of 3D direct
numerical simulations of incompressible decaying turbulence. We focus on
parameters similar to the ones encountered in geophysical and astrophysical
flows, so that the Rossby number is small, the interaction parameter is large,
but the Elsasser number, defining the ratio between Coriolis and Lorentz
forces, is about unity. These simulations allow to quantify the effect of
rotation and thus inertial waves on the growth of magnetic fluctuations due to
Alfv\'en waves. Rotation prevents the occurrence of equipartition between
kinetic and magnetic energies, with a reduction of magnetic energy at
decreasing Elsasser number {\Lambda}. It also causes a decrease of energy
transfer mediated by cubic correlations. In terms of flow structure, a decrease
of {\Lambda} corresponds to an increase in the misalignment of velocity and
magnetic field.Comment: 18 pages, 12 figure
Anisotropy in Homogeneous Rotating Turbulence
The effective stress tensor of a homogeneous turbulent rotating fluid is
anisotropic. This leads us to consider the most general axisymmetric four-rank
``viscosity tensor'' for a Newtonian fluid and the new terms in the turbulent
effective force on large scales that arise from it, in addition to the
microscopic viscous force. Some of these terms involve couplings to vorticity
and others are angular momentum non conserving (in the rotating frame).
Furthermore, we explore the constraints on the response function and the
two-point velocity correlation due to axisymmetry. Finally, we compare our
viscosity tensor with other four-rank tensors defined in current approaches to
non-rotating anisotropic turbulence.Comment: 14 pages, RevTe
Libration driven multipolar instabilities
We consider rotating flows in non-axisymmetric enclosures that are driven by
libration, i.e. by a small periodic modulation of the rotation rate. Thanks to
its simplicity, this model is relevant to various contexts, from industrial
containers (with small oscillations of the rotation rate) to fluid layers of
terrestial planets (with length-of-day variations). Assuming a multipolar
-fold boundary deformation, we first obtain the two-dimensional basic flow.
We then perform a short-wavelength local stability analysis of the basic flow,
showing that an instability may occur in three dimensions. We christen it the
Libration Driven Multipolar Instability (LDMI). The growth rates of the LDMI
are computed by a Floquet analysis in a systematic way, and compared to
analytical expressions obtained by perturbation methods. We then focus on the
simplest geometry allowing the LDMI, a librating deformed cylinder. To take
into account viscous and confinement effects, we perform a global stability
analysis, which shows that the LDMI results from a parametric resonance of
inertial modes. Performing numerical simulations of this librating cylinder, we
confirm that the basic flow is indeed established and report the first
numerical evidence of the LDMI. Numerical results, in excellent agreement with
the stability results, are used to explore the non-linear regime of the
instability (amplitude and viscous dissipation of the driven flow). We finally
provide an example of LDMI in a deformed spherical container to show that the
instability mechanism is generic. Our results show that the previously studied
libration driven elliptical instability simply corresponds to the particular
case of a wider class of instabilities. Summarizing, this work shows that
any oscillating non-axisymmetric container in rotation may excite intermittent,
space-filling LDMI flows, and this instability should thus be easy to observe
experimentally
A scaling theory of 3D spinodal turbulence
A new scaling theory for spinodal decomposition in the inertial hydrodynamic
regime is presented. The scaling involves three relevant length scales, the
domain size, the Taylor microscale and the Kolmogorov dissipation scale. This
allows for the presence of an inertial "energy cascade", familiar from theories
of turbulence, and improves on earlier scaling treatments based on a single
length: these, it is shown, cannot be reconciled with energy conservation. The
new theory reconciles the t^{2/3} scaling of the domain size, predicted by
simple scaling, with the physical expectation of a saturating Reynolds number
at late times.Comment: 5 pages, no figures, revised version submitted to Phys Rev E Rapp
Comm. Minor changes and clarification
Magnetized stratified rotating shear waves
International audienceWe present a spectral linear analysis in terms of advected Fourier modes to describe the behavior of a fluid submitted to four constraints: shear (with rate S), rotation (with angular velocity Ω), stratification, and magnetic field within the linear spectral theory or the shearing box model in astrophysics. As a consequence of the fact that the base flow must be a solution of the Euler-Boussinesq equations, only radial and/or vertical density gradients can be taken into account. Ertel's theorem no longer is valid to show the conservation of potential vorticity, in the presence of the Lorentz force, but a similar theorem can be applied to a potential magnetic induction: The scalar product of the density gradient by the magnetic field is a Lagrangian invariant for an inviscid and nondiffusive fluid. The linear system with a minimal number of solenoidal components, two for both velocity and magnetic disturbance fields, is eventually expressed as a four-component inhomogeneous linear differential system in which the buoyancy scalar is a combination of solenoidal components (variables) and the (constant) potential magnetic induction. We study the stability of such a system for both an infinite streamwise wavelength (k1=0, axisymmetric disturbances) and a finite one (k1≠0, nonaxisymmetric disturbances). In the former case (k1=0), we recover and extend previous results characterizing the magnetorotational instability (MRI) for combined effects of radial and vertical magnetic fields and combined effects of radial and vertical density gradients. We derive an expression for the MRI growth rate in terms of the stratification strength, which indicates that purely radial stratification can inhibit the MRI instability, while purely vertical stratification cannot completely suppress the MRI instability. In the case of nonaxisymmetric disturbances (k1≠0), we only consider the effect of vertical stratification, and we use Levinson's theorem to demonstrate the stability of the solution at infinite vertical wavelength (k3=0): There is an oscillatory behavior for τ>1+∣∣K2/k1∣∣, where τ=St is a dimensionless time and K2 is the radial component of the wave vector at τ=0. The model is suitable to describe instabilities leading to turbulence by the bypass mechanism that can be relevant for the analysis of magnetized stratified Keplerian disks with a purely azimuthal field. For initial isotropic conditions, the time evolution of the spectral density of total energy (kinetic + magnetic + potential) is considered. At k3=0, the vertical motion is purely oscillatory, and the sum of the vertical (kinetic + magnetic) energy plus the potential energy does not evolve with time and remains equal to its initial value. The horizontal motion can induce a rapid transient growth provided K2/k1≫1. This rapid growth is due to the aperiodic velocity vortex mode that behaves like Kh/kh where kh(τ)=[k21+(K2−k1τ)2]1/2 and Kh=kh(0). After the leading phase (τ>K2/k1≫1), the horizontal magnetic energy and the horizontal kinetic energy exhibit a similar (oscillatory) behavior yielding a high level of total energy. The contribution to energies coming from the modes k1=0 and k3=0 is addressed by investigating the one-dimensional spectra for an initial Gaussian dense spectrum. For a magnetized Keplerian disk with a purely vertical field, it is found that an important contribution to magnetic and kinetic energies comes from the region near k1=0. The limit at k1=0 of the streamwise one-dimensional spectra of energies, or equivalently, the streamwise two-dimensional (2D) energy, is then computed. The comparison of the ratios of these 2D quantities with their three-dimensional counterparts provided by previous direct numerical simulations shows a quantitative agreement
Signatures of two-dimensionalisation of 3D turbulence in presence of rotation
A reason has been given for the inverse energy cascade in the
two-dimensionalised rapidly rotating 3D incompressible turbulence. For such
system, literature shows a possibility of the exponent of wavenumber in the
energy spectrum's relation to lie between -2 and -3. We argue the existence of
a more strict range of -2 to -7/3 for the exponent in the case of rapidly
rotating turbulence which is in accordance with the recent experiments. Also, a
rigorous derivation for the two point third order structure function has been
provided helping one to argue that even with slow rotation one gets, though
dominated, a spectrum with the exponent -2.87, thereby hinting at the
initiation of the two-dimensionalisation effect with rotation.Comment: An extended and typos-corrected version of the earlier submissio
Producing 'Human Elements Based Medical Technologies' in Biotech Companies: Some Ethical and Organisational Ingredients for Innovative Cooking
This article is based on the findings of an EU-funded qualitative research project, entitled 'From GMP to GBP: Fostering good bioethics practices [GBP] among the European biotechnology industry', which seeks to improve the understanding of bioethical issues through the observation of the daily practices in European biotechnology companies and proposes a methodology approaching ethical issues. The comparative study was carried out in biotech companies in France, Italy, Sweden, Hungary and Belgium which develop a wide range of new technologies, all of them involving human materials or where human subjects participate (in clinical trials). Based on our findings in these local settings, we suggest that the notion of bioethics and the way its production is theorised need to be re-conceptualised. We argue that material practices and moral statements are intermingled in inextricable ways that render the formation of bioethical concerns fully dependent on the organisational landscape in which it is embedded. More precisely, the here presented co-production model of moral statements and organisational practices presents a set of common factors that influence how bioethical discourses are shaped, despite the heterogeneity of their epistemic cultures. For example, the procedural design of cell-based-products, the modes of collecting and storing biological specimen, the relationship between patients and companies and technological transfers to emerging countries are defining components that contribute to the shaping process of bioethical concerns. Thus, the path dependency of bioethical concerns relies on an already existing, specific infrastructure and existing relationships within and outside a company rather than on external judgement subsequently applied to its objects, or a collection of processes of reasoning coming from external institutions
Relating statistics to dynamics in axisymmetric homogeneous turbulence
The structure and the dynamics of homogeneous turbulence are modified by the
presence of body forces such that the Coriolis or the buoyancy forces, which
may render a wide range of turbulence scales anisotropic. The corresponding
statistical characterization of such effects is done in physical space using
structure functions, as well as in spectral space with spectra of two-point
correlations, providing two complementary viewpoints. In this framework,
second-order and third-order structure functions are put in parallel with
spectra of two-point second- and third-order velocity correlation functions,
using passage relations. Such relations apply in the isotropic case, or for
isotropically averaged statistics, which, however, do not reflect the actual
more complex structure of anisotropic turbulence submitted to rotation or
stratification. This complexity is demonstrated in this paper by
orientation-dependent energy and energy transfer spectra produced in both cases
by means of a two-point statistical model for axisymmetric turbulence. We show
that, to date, the anisotropic formalism used in the spectral transfer
statistics is especially well-suited to analyze the refined dynamics of
anisotropic homogeneous turbulence, and that it can help in the analysis of
isotropically computed third-order structure function statistics often used to
characterize anisotropic contexts.Comment: Physica
On two-dimensionalization of three-dimensional turbulence in shell models
Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model,
the signatures of so-called two-dimensionalization effect of three-dimensional
incompressible, homogeneous, isotropic fully developed unforced turbulence have
been studied and reproduced. Within the framework of shell models we have
obtained the following results: (i) progressive steepening of the energy
spectrum with increased strength of the rotation, and, (ii) depletion in the
energy flux of the forward forward cascade, sometimes leading to an inverse
cascade. The presence of extended self-similarity and self-similar PDFs for
longitudinal velocity differences are also presented for the rotating 3D
turbulence case
The decay of Batchelor and Saffman rotating turbulence
The decay rate of isotropic and homogeneous turbulence is known to be
affected by the large-scale spectrum of the initial perturbations, associated
with at least two cannonical self-preserving solutions of the von
K\'arm\'an-Howarth equation: the so-called Batchelor and Saffman spectra. The
effect of long-range correlations in the decay of anisotropic flows is less
clear, and recently it has been proposed that the decay rate of rotating
turbulence may be independent of the large-scale spectrum of the initial
perturbations. We analyze numerical simulations of freely decaying rotating
turbulence with initial energy spectra (Batchelor turbulence) and
(Saffman turbulence) and show that, while a self-similar decay
cannot be identified for the total energy, the decay is indeed affected by
long-range correlations. The decay of two-dimensional and three-dimensional
modes follows distinct power laws in each case, which are consistent with
predictions derived from the anisotropic von K\'arm\'an-Howarth equation, and
with conservation of anisotropic integral quantities by the flow evolution
- …
