328 research outputs found
Food waste materials appear efficient and low-cost adsorbents for the removal of organic and inorganic pollutants from wastewater
In recent studies, the adsorption capacity of several food waste materials has been assessed by performing adsorption experiments in heterogeneous operating conditions. In a latest study, the efficiency of such food waste materials for the removal of metals and metalloids from complex multi-element
solutions was evaluated in homogeneous experimental conditions, which allowed comparing the adsorption capacities of the individual adsorbents. Considering the high efficiency of the examined low-cost adsorbents for the removal of inorganic pollutants, preliminary studies were conducted in our lab for assessing the potential of the investigated food waste materials to adsorb volatile organic compounds from a real polluted matrix of leachate. Some recent
studies have shown the efficiency of low cost materials for the removal of industrial organic dyes, polycyclic aromatic hydrocarbons and phenolic compounds. However, the food waste adsorbents’ efficiency for the removal of volatile organic compounds was not investigated. Our preliminary studies showed good adsorption capacities of the examined food waste materials for aliphatic and aromatic hydrocarbons. Therefore, it is worth to carry out further studies about volatile organic compounds’ removal by food waste adsorbents
Oxidative potential associated with urban aerosol deposited into the respiratory system and relevant elemental and ionic fraction contributions
Size-segregated aerosol measurements were carried out at an urban and at an industrial site. Soluble and insoluble fractions of elements and inorganic ions were determined. Oxidative potential (OP) was assessed on the soluble fraction of Particulate Matter (PM) by ascorbic acid (AA), dichlorofluorescein (DCFH) and dithiothreitol (DTT) assays. Size resolved elemental, ion and OP doses in the head (H), tracheobronchial (TB) and alveolar (Al) regions were estimated using the Multiple-Path Particle Dosimetry (MPPD) model. The total aerosol respiratory doses due to brake and soil resuspension emissions were higher at the urban than at the industrial site. On the contrary, the doses of anthropic combustion tracers were generally higher at the industrial site. In general, the insoluble fraction was more abundantly distributed in the coarse than in the fine mode and vice versa for the soluble fraction. Consequently, for the latter, the percent of the total respiratory dose deposited in TB and Al regions increased. Oxidative potential assay (OPAA) doses were distributed in the coarse region; therefore, their major contribution was in the H region. The contribution in the TB and Al regions increased for OPDTT and OPDCFH
Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow
An optical flow gradient algorithm was applied to spontaneously forming net-
works of neurons and glia in culture imaged by fluorescence optical microscopy
in order to map functional calcium signaling with single pixel resolution.
Optical flow estimates the direction and speed of motion of objects in an image
between subsequent frames in a recorded digital sequence of images (i.e. a
movie). Computed vector field outputs by the algorithm were able to track the
spatiotemporal dynamics of calcium signaling pat- terns. We begin by briefly
reviewing the mathematics of the optical flow algorithm, and then describe how
to solve for the displacement vectors and how to measure their reliability. We
then compare computed flow vectors with manually estimated vectors for the
progression of a calcium signal recorded from representative astrocyte
cultures. Finally, we applied the algorithm to preparations of primary
astrocytes and hippocampal neurons and to the rMC-1 Muller glial cell line in
order to illustrate the capability of the algorithm for capturing different
types of spatiotemporal calcium activity. We discuss the imaging requirements,
parameter selection and threshold selection for reliable measurements, and
offer perspectives on uses of the vector data.Comment: 23 pages, 5 figures. Peer reviewed accepted version in press in
Annals of Biomedical Engineerin
Combining Membrane Potential Imaging with l-Glutamate or GABA Photorelease
Combining membrane potential imaging using voltage sensitive dyes with photolysis of l-glutamate or GABA allows the monitoring of electrical activity elicited by the neurotransmitter at different sub-cellular sites. Here we describe a simple system and some basic experimental protocols to achieve these measurements. We show how to apply the neurotransmitter and how to vary the dimension of the area of photolysis. We assess the localisation of photolysis and of the recorded membrane potential changes by depolarising the dendrites of cerebellar Purkinje neurons with l-glutamate photorelease using different experimental protocols. We further show in the apical dendrites of CA1 hippocampal pyramidal neurons how l-glutamate photorelease can be used to calibrate fluorescence changes from voltage sensitive dyes in terms of membrane potential changes (in mV) and how GABA photorelease can be used to investigate the phenomenon of shunting inhibition. We also show how GABA photorelease can be used to measure chloride-mediated changes of membrane potential under physiological conditions originating from different regions of a neuron, providing important information on the local intracellular chloride concentrations. The method and the proof of principle reported here open the gateway to a variety of important applications where the advantages of this approach are necessary
Ultrafine particle features associated with pro-inflammatory and oxidative responses: Implications for health studies
Suspected detrimental health effects associated with ultrafine particles (UFPs) are impressive. However, epidemiological evidence is still limited. This is potentially due to challenges related to UFP exposure assessment and the lack of consensus on a standard methodology for UFPs. It is imperative to focus future health studies on those UFP metrics more likely to represent health effects. This is the purpose of this paper, where we extend the results obtained during the CARE ("Carbonaceous Aerosol in Rome and Environs") experiment started in 2017 in Rome. The major purpose is to investigate features of airborne UFPs associated with pro-inflammatory and oxidative responses. Aerosol chemical, microphysical, and optical properties were measured, together with the oxidative potential, at temporal scales relevant for UFPs (minutes to hours). The biological responses were obtained using both in-vivo and in-vitro tests carried out directly under environmental conditions. Findings indicate that caution should be taken when assessing health-relevant exposure to UFPs through the conventional metrics like total particle number concentration and PM2.5 and Black Carbon (BC) mass concentration. Conversely, we recommend adding to these, a UFP source apportionment analysis and indicators for both ultrafine black carbon and the size of particles providing most of the total surface area to available toxic molecules
Role of Hf on Phase Formation in Ti45Zr(38-x)Hf(x)Ni17 Liquids and Solids
Hafnium and zirconium are very similar, with almost identical sizes and chemical bonding characteristics. However, they behave differently when alloyed with Ti and Ni. A sharp phase formation boundary near 18-21 at.% Hf is observed in rapidly-quenched and as-cast Ti45Zr38-xHfxNi17 alloys. Rapidly-quenched samples that contain less than 18 at.% Hf form the icosahedral quasicrystal phase, whiles samples containing more than 21 at.% form the 3/2 rational approximant phase. In cast alloys, a C14 structure is observed for alloys with Hf lower than the boundary concentration, while a large-cell (11.93 ) FCC Ti2Ni-type structure is found in alloys with Hf concentrations above the boundary. To better understand the role of Hf on phase formation, the structural evolution with supercooling and the solidification behavior of liquid Ti45Zr38-xHfxNi17 alloys (x=0, 12, 18, 21, 38) were studied using the Beamline Electrostatic Levitation (BESL) technique using 125keV x-rays on the 6ID-D beamline at the Advanced Photon Source, Argonne National Laboratory. For all liquids primary crystallization was to a BCC solid solution phase; interestly, an increase in Hf concentration leads to a decrease in the BCC lattice parameter in spite of the chemical similarity between Zr and Hf. A Reitveld analysis confirmed that as in the cast alloys, the secondary phase that formed was the C14 below the phase formation boundary and a Ti2Ni-type structure at higher Hf concentrations. Both the liquidus temperature and the reduced undercooling change sharply on traversing the phase formation boundary concentration, suggesting a change in the liquid structure. Structural information from a Honeycutt-Anderson index analysis of reverse Monte Carlo fits to the S(q) liquid data will be presented to address this issue
Assessment of the link between atmospheric dispersion and chemical composition of PM10 at 2-h time resolution
The concentration of air pollutants is governed by both emission rate and atmospheric dispersion conditions. The role played by the atmospheric mixing height in determining the daily time pattern of PM components at the time resolution of 2 h was studied during 21 days of observation selected from a 2-month field campaign carried out in the urban area of Rome, Italy. Natural radioactivity was used to obtain information about the mixing properties of the lower atmosphere throughout the day and allowed the identification of advection and stability periods. PM10 composition was determined by X-ray fluorescence, ion chromatography, inductively coupled plasma-mass spectrometry and thermo-optical analysis. A satisfactory mass closure was obtained on a 2-h basis, and the time pattern of the PM10 macro-sources (soil, sea, secondary inorganics, organics, traffic exhaust) was acquired at the same time scale. After a complete quality control procedure, 27 main components and source tracers were selected for further elaboration. On this database, we identified some groups of co-varying species related to the main sources of PM. Each group showed a peculiar behaviour in relation to the mixing depth. PM components released by soil, biomass burning and traffic exhaust, and, particularly, ammonium nitrate, showed a clear dependence on the mixing properties of the lower atmosphere. Biomass burning components and organics peaked during the night hours (around midnight), following the atmospheric stabilization and increased emission rate. Traffic exhausts and non-exhausts species also peaked in the evening, but they showed a second, minor increase between 6:00 and 10:00 when the strengthening of the emission rate (morning rush hour) was counterbalanced by the dilution of the atmosphere (increasing mixing depth). In the case of ammonium nitrate, high concentrations were kept during the whole night and morning
Element levels and predictors of exposure in the hair of Ethiopian children
Children’s development and health may be affected by toxic heavy metal exposure or suboptimal essential element intake. This study aimed to provide updated information regarding the concentrations of 41 elements in children’s hair (aged under 18) living in a rural area of the Benishangul-Gumuz region, Ethiopia. The highest average levels (as a geometric mean) for toxic heavy metals were obtained for Al (1 mg kg−1), Pb (3.1 mg kg−1), and Ni (1.2 mg kg−1), while the lowest concentrations among the essential elements were found for Co (0.32 mg kg−1), Mo (0.07 mg kg−1), Se (0.19 mg kg−1), and V (0.8 mg kg−1). Hair analysis was combined with a survey to evaluate relationships and variations among subgroups and potential metal exposure predictors. Females showed significantly higher concentrations for most hair elements, excluding Zn, than males, and the 6–11 years age group reported the highest levels for Be, Ce, Co, Fe, La, Li, Mo, and Na. The main predictors of exposure to toxic elements were fish consumption for Hg and drinking water for Ba, Be, Cs, Li, Ni, Tl, and U. The data from this study can be used to develop prevention strategies for children’s health and protection in developing countries
Kinetic regulation of multi-ligand binding proteins
Background: Second messengers, such as calcium, regulate the activity of multisite binding proteins in a concentration-dependent manner. For example, calcium binding has been shown to induce conformational transitions in the calcium-dependent protein calmodulin, under steady state conditions. However, intracellular concentrations of these second messengers are often subject to rapid change. The mechanisms underlying dynamic ligand-dependent regulation of multisite proteins require further elucidation. Results: In this study, a computational analysis of multisite protein kinetics in response to rapid changes in ligand concentrations is presented. Two major physiological scenarios are investigated: i) Ligand concentration is abundant and the ligand-multisite protein binding does not affect free ligand concentration, ii) Ligand concentration is of the same order of magnitude as the interacting multisite protein concentration and does not change. Therefore, buffering effects significantly influence the amounts of free ligands. For each of these scenarios the influence of the number of binding sites, the temporal effects on intermediate apo- and fully saturated conformations and the multisite regulatory effects on target proteins are investigated. Conclusions: The developed models allow for a novel and accurate interpretation of concentration and pressure jump-dependent kinetic experiments. The presented model makes predictions for the temporal distribution of multisite protein conformations in complex with variable numbers of ligands. Furthermore, it derives the characteristic time and the dynamics for the kinetic responses elicited by a ligand concentration change as a function of ligand concentration and the number of ligand binding sites. Effector proteins regulated by multisite ligand binding are shown to depend on ligand concentration in a highly nonlinear fashion
In vitro characterization of genotoxic damage induced by various PM sources on the bronchial epithelial cell line BEAS-2B
Particulate matter (PM) is a complex air pollutant, comprising both particles and gases, whose presence negatively affects individuals’ life quality and constitutes a major risk factor for health worldwide. It is composed by a particles’ population characterized by a variety of physiochemical characteristics (e.g. size, composition, aerodynamic behaviour) and sources.
The wide spectrum of adverse health effects occurring after PM exposure is also reflected at cellular level
in the activation of many different toxicity mechanisms. The variety of the latter can suggest that each source may be responsible for specific kinds of cellular damage. To validate this hypothesis, 5 different sources of PM were evaluated in the present study: a positive control DEP NIES no.8 (D), coke dust (C), pellet ashes (PA), incinerator ashes (IA), and brake dust (BD); these sources were previously characterized and are all comprised in the PM10 class.
To deeply investigate the genotoxic potential of the different PMs, an in vitro investigation was performed using the human bronchial epithelial cell line BEAS-2B. Cells were treated for 24 hours with increasing concentrations of PM (25, 50, 100, and 150 μg/mL). Previous analyses confirmed the absence of
cytotoxicity at all concentrations tested. The modified alkaline Comet assay was used in combination with
three endonuclease enzymes (ENDOIII, FPG, and ENDOV) to recognize oxidative or direct damage on the DNA strand. PM treatments induced an increase of DNA damage at all concentrations tested, compared to
controls. The characterization of the genotoxic damage revealed that all the sources of PM are particularly
active in inducing oxidation of the DNA bases. Analysing each source allowed to highlight some peculiarities as the oxidation of purines (adenine and guanine) identified by FPG treatments, that results to be particularly increased in samples treated with D, C, and BD; while ENDOIII highlighted the presence of oxidises pyrimidines in samples treated with PA and IA. Moreover, the involvement of direct damage, in the form of cyclobutane pyrimidine dimers, at the higher dose of treatment with D was recognized by ENDOV.
This work has been funded by the Italian Ministry of the University under the PRIN2017 RHAPS project
(grant number: 2017MSN7M8)
- …
