1,340 research outputs found
Stellar Populations in Barred Galaxies
We developed an iterative technique to better characterize stellar
populations and the central activity of barred galaxies using evolutionary
synthesis codes and OASIS data. The case of NGC5430 is presented here. Our
results are reinforcing the role played by the bar and nuclear structures for
the evolution of galaxies.Comment: 2 pages, 1 figure, to be published in the proceedings of IAU Symp.
262 "Stellar Populations - Planing for the Next Decate" (Aug. 2009
Joint Optical Flow and Temporally Consistent Semantic Segmentation
The importance and demands of visual scene understanding have been steadily
increasing along with the active development of autonomous systems.
Consequently, there has been a large amount of research dedicated to semantic
segmentation and dense motion estimation. In this paper, we propose a method
for jointly estimating optical flow and temporally consistent semantic
segmentation, which closely connects these two problem domains and leverages
each other. Semantic segmentation provides information on plausible physical
motion to its associated pixels, and accurate pixel-level temporal
correspondences enhance the accuracy of semantic segmentation in the temporal
domain. We demonstrate the benefits of our approach on the KITTI benchmark,
where we observe performance gains for flow and segmentation. We achieve
state-of-the-art optical flow results, and outperform all published algorithms
by a large margin on challenging, but crucial dynamic objects.Comment: 14 pages, Accepted for CVRSUAD workshop at ECCV 201
Morphometric and Histopathologic Changes in Skeletal Muscle Induced for Injectable PLGA Microparticles
Galdames, IS (Galdames, Ivan Suazo).Univ Talca, Talca, ChileThe administration of microencapsulated drug in a matrix acid poly(lactic-co-glycolic acid) (PLGA) by intramuscular (IM) in humans has been approved by the FDA for various applications though it is not clear what effect they have on the morphological parameters of muscle tissue. The aim of this study was to analyze the morphological changes in the skeletal muscle tissue with their use. We used 12 adult female Sprague Dawley rats (Rattus novergicus) that were injected into their right gastrocnemius muscle belly with: sterile vehicle solution (01, n = 4), 0.5 mg PLGA microparticle (02, n = 4) and 0.75 mg PLGA microparticle (03, n = 4), both dissolved in a sterile vehicle solution. At 14 days post injection the number and diameter of muscle fibers, the level of inflammation and histology appearance in terms of organization of muscle fibers, cellular distribution, tissue morphology and the presence of polymer waste were determined and the results between the groups compared. The administration of the compound in a single dose did not alter the morphometric parameters (number and diameter of muscle fibers) despite generating a mild inflammation in the tissue associated with the presence of polymeric residues, suggesting that the PLGA microparticles were well tolerated by the muscle tissue at concentrations tested (0.5 and 0.75 mg).
n Number: WOS:00029366100001
Globally Anisotropic High Porosity Silica Aerogels
We discuss two methods by which high porosity silica aerogels can be
engineered to exhibit global anisotropy. First, anisotropy can be introduced
with axial strain. In addition, intrinsic anisotropy can result during growth
and drying stages and, suitably controlled, it can be correlated with
preferential radial shrinkage in cylindrical samples. We have performed small
angle X-ray scattering (SAXS) to characterize these two types of anisotropy. We
show that global anisotropy originating from either strain or shrinkage leads
to optical birefringence and that optical cross-polarization studies are a
useful characterization of the uniformity of the imposed global anisotropy.Comment: 18 pages, 14 figures, submitted to Journal of Non-Crystalline Solid
Executive functioning predicts reading, mathematics, and theory of mind during the elementary years.
The goal of this study was to specify how executive functioning components predict reading, mathematics, and theory of mind performance during the elementary years. Ninety-three 7- to 10-year-old children completed measures of working memory, inhibition, flexibility, reading, mathematics, and theory of mind. Path analysis revealed that all three executive functioning components (working memory, inhibition, and flexibility) mediated age differences in reading comprehension, whereas age predicted mathematics and theory of mind directly. In addition, reading mediated the influence of executive functioning components on mathematics and theory of mind, except that flexibility also predicted mathematics directly. These findings provide important details about the development of executive functioning, reading, mathematics, and theory of mind during the elementary years
Bayesian Joint Detection-Estimation of cerebral vasoreactivity from ASL fMRI data
International audienceAlthough the study of cerebral vasoreactivity using fMRI is mainly conducted through the BOLD fMRI modality, owing to its relatively high signal-to-noise ratio (SNR), ASL fMRI provides a more interpretable measure of cerebral vasoreactivity than BOLD fMRI. Still, ASL suffers from a low SNR and is hampered by a large amount of physiological noise. The current contribution aims at improving the re- covery of the vasoreactive component from the ASL signal. To this end, a Bayesian hierarchical model is proposed, enabling the recovery of per- fusion levels as well as fitting their dynamics. On a single-subject ASL real data set involving perfusion changes induced by hypercapnia, the approach is compared with a classical GLM-based analysis. A better goodness-of-fit is achieved, especially in the transitions between baseline and hypercapnia periods. Also, perfusion levels are recovered with higher sensitivity and show a better contrast between gray- and white matter
Properties of the giant HII regions and bar in the nearby spiral galaxy NGC5430
In order to better understand the impact of the bar on the evolution of
spiral galaxies, we measure the properties of giant HII regions and the bar in
the SB(s)b galaxy NGC5430. We use two complementary data sets, both obtained at
the Observatoire du Mont-M\'egantic: a hyperspectral data cube from the imaging
Fourier transform spectrograph SpIOMM, and high-resolution spectra across the
bar from a long-slit spectrograph. We flux-calibrate SpIOMM spectra for the
first time, and produce H{\alpha} and [NII]{\lambda}6584\r{A} intensity maps
from which we identify 51 giant HII regions in the spiral arms and bar. We
evaluate the type of activity, the oxygen abundance and the age of the young
populations contained in these giant HII regions and in the bar. Thus, we
confirm that NGC5430 does not harbour a strong AGN, and that its Wolf-Rayet
knot shows a pure HII region nature. We find no variation in abundance or age
between the bar and spiral arms, nor as a function of galactocentric radius.
These results are consistent with the hypothesis that a chemical mixing
mechanism is at work in the galaxy's disc to flatten the oxygen abundance
gradient. Using the starburst99 model, we estimate the ages of the young
populations, and again find no variations in age between the bar and the arms
or as a function of radius. Instead, we find evidence for two galaxy-wide waves
of star formation, about 7.1 Myr and 10.5 Myr ago. While the bar in NGC5430 is
an obvious candidate to trigger these two episodes, it is not clear how the bar
could induce widespread star formation on such a short time-scale.Comment: 14 pages, 9 figures, 3 tables, accepted for publication in MNRA
Long-term preconditioning of the coral Pocillopora acuta does not restore performance in future ocean conditions
There is overwhelming evidence that tropical coral reefs are severely impacted by human induced climate change. Assessing the capability of reef-building corals to expand their tolerance limits to survive projected climate trajectories is critical for their protection and management. Acclimation mechanisms such as developmental plasticity may provide one means by which corals could cope with projected ocean warming and acidification. To assess the potential of preconditioning to enhance thermal tolerance in the coral Pocillopora acuta, colonies were kept under three different scenarios from settlement to 17 months old: present day (0.9 °C-weeks (Degree Heating Weeks), + 0.75 °C annual, 400 ppm pCO2) mid-century (2.5 °C-weeks, + 1.5 °C annual, 685 ppm pCO2) and end of century (5 °C-weeks, + 2 °C annual, 900 ppm pCO2) conditions. Colonies from the present-day scenario were subsequently introduced to the mid-century and end of century conditions for six weeks during summer thermal maxima to examine if preconditioned colonies (reared under these elevated conditions) had a higher physiological performance compared to naive individuals. Symbiodiniaceae density and chlorophyll a concentrations were significantly lower in mid-century and end of century preconditioned groups, and declines in symbiont density were observed over the six-week accumulated heat stress in all treatments. Maximum photosynthetic rate was significantly suppressed in mid-century and end of century preconditioned groups, while minimum saturating irradiances were highest for 2050 pre-exposed individuals with parents originating from specific populations. The results of this study indicate preconditioning to elevated temperature and pCO2 for 17 months did not enhance the physiological performance in P. acuta. However, variations in trait responses and effects on tolerance found among treatment groups provides evidence for differential capacity for phenotypic plasticity among populations which could have valuable applications for future restoration efforts
Passively Administered Pooled Human Immunoglobulins Exert IL-10 Dependent Anti-Inflammatory Effects that Protect against Fatal HSV Encephalitis
HSV-1 is the leading cause of sporadic encephalitis in humans. HSV infection of susceptible 129S6 mice results in fatal encephalitis (HSE) caused by massive inflammatory brainstem lesions comprising monocytes and neutrophils. During infection with pathogenic microorganisms or autoimmune disease, IgGs induce proinflammatory responses and recruit innate effector cells. In contrast, high dose intravenous immunoglobulins (IVIG) are an effective treatment for various autoimmune and inflammatory diseases because of potent anti-inflammatory effects stemming in part from sialylated IgGs (sIgG) present at 1–3% in IVIG. We investigated the ability of IVIG to prevent fatal HSE when given 24 h post infection. We discovered a novel anti-inflammatory pathway mediated by low-dose IVIG that protected 129S6 mice from fatal HSE by modulating CNS inflammation independently of HSV specific antibodies or sIgG. IVIG suppressed CNS infiltration by pathogenic CD11b+ Ly6Chigh monocytes and inhibited their spontaneous degranulation in vitro. FcγRIIb expression was required for IVIG mediated suppression of CNS infiltration by CD45+ Ly6Clow monocytes but not for inhibiting development of Ly6Chigh monocytes. IVIG increased accumulation of T cells in the CNS, and the non-sIgG fraction induced a dramatic expansion of FoxP3+ CD4+ T regulatory cells (Tregs) and FoxP3− ICOS+ CD4+ T cells in peripheral lymphoid organs. Tregs purified from HSV infected IVIG treated, but not control, mice protected adoptively transferred mice from fatal HSE. IL-10, produced by the ICOS+ CD4+ T cells that accumulated in the CNS of IVIG treated, but not control mice, was essential for induction of protective anti-inflammatory responses. Our results significantly enhance understanding of IVIG's anti-inflammatory and immunomodulatory capabilities by revealing a novel sIgG independent anti-inflammatory pathway responsible for induction of regulatory T cells that secrete the immunosuppressive cytokine IL-10 and further reveal the therapeutic potential of IVIG for treating viral induced inflammatory diseases
Global warming and recurrent mass bleaching of corals
During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs
- …
