455 research outputs found
Plasma kinetics issues in an ESA study for a plasma laboratory in space
A study supported by the European Space Agency (ESA), in the context of its General Studies Programme, performed an investigation of the possible use of space for studies in pure and applied plasma physics, in areas not traditionally
covered by ‘space plasma physics’. A set of experiments have been identified that can potentially provide access to new phenomena and to allow advances in several fields of plasma science. These experiments concern phenomena on a
spatial scale (101–104 m) intermediate between what is achievable on the ground and the usual solar system plasma observations. Detailed feasibility studies have been performed for three experiments: active magnetic experiments, largescale discharges and long tether–plasma interactions. The perspectives opened by these experiments are discussed for magnetic reconnection, instabilities,
MHD turbulence, atomic excited states kinetics, weakly ionized plasmas,plasma diagnostics, artificial auroras and atmospheric studies. The discussion is also supported by results of numerical simulations and estimates
Probing photo-ionization: simulations of positive streamers in varying N2:O2 mixtures
Photo-ionization is the accepted mechanism for the propagation of positive
streamers in air though the parameters are not very well known; the efficiency
of this mechanism largely depends on the presence of both nitrogen and oxygen.
But experiments show that streamer propagation is amazingly robust against
changes of the gas composition; even for pure nitrogen with impurity levels
below 1 ppm streamers propagate essentially with the same velocity as in air,
but their minimal diameter is smaller, and they branch more frequently.
Additionally, they move more in a zigzag fashion and sometimes exhibit a
feathery structure. In our simulations, we test the relative importance of
photo-ionization and of the background ionization from pulsed repetitive
discharges, in air as well as in nitrogen with 1 ppm O2 . We also test
reasonable parameter changes of the photo-ionization model. We find that photo-
ionization dominates streamer propagation in air for repetition frequencies of
at least 1 kHz, while in nitrogen with 1 ppm O2 the effect of the repetition
frequency has to be included above 1 Hz. Finally, we explain the feather-like
structures around streamer channels that are observed in experiments in
nitrogen with high purity, but not in air.Comment: 12 figure
The ESA "Plasma Laboratory in Space" study
The European Space Agency has initiated, in the context of its General Studies Programme, a study of the
possible use of space for studies in pure and applied plasma physics, in areas not traditionally covered by “space plasma physics”. A team of experts has been set-up to review a broad range of area including industrial
plasma physics and pure plasma physics, astrophysical and solar-terrestrial areas. A set of experiments have been identified that can potentially provide access to new phenomena and to allow advances in several fields
of plasma science. These experiments concern phenomena on spatial scale (102 to104 m) intermediate between what is achievable on ground experiment and usual solar system plasma observations
An investigation of CO2 splitting using nanosecond pulsed corona discharge: effect of argon addition on CO2 conversion and energy efficiency
The plasma chemical splitting of carbon dioxide (CO2) to produce carbon monoxide (CO) in a
pulsed corona discharge was investigated from both an experimental and a numerical standpoint.
High voltage nanosecond pulses were applied to a stream of pure CO2 and its mixture with argon,
and the gaseous products were identified using Fourier transform infrared spectroscopy. Due to the
shape of pulses, the process of CO2 splitting was found to proceed in two phases. The first phase is
dominated by ionization, which generates a high electron density. Then, during the second phase,
direct electron impact dissociation of CO2 contributes to a large portion of CO production.
Conversion and energy efficiency were calculated for the tested conditions. The conversions
achieved are comparable to those obtained using other high pressure non-thermal discharges, such as
dielectric barrier discharge. However, the energy efficiencies were considerably higher, which are
favorable to industrial applications that require atmospheric conditions and elevated gas flow rates
Dendritic Cells Are the Intriguing Players in the Puzzle of Idiopathic Pulmonary Fibrosis Pathogenesis
Idiopathic pulmonary fibrosis (IPF) is the most devastating progressive interstitial lung disease that remains refractory to treatment. Pathogenesis of IPF relies on the aberrant cross-talk between injured alveolar cells and myofibroblasts, which ultimately leads to an aberrant fibrous reaction. The contribution of the immune system to IPF remains not fully explored. Recent evidence suggests that both innate and adaptive immune responses may participate in the fibrotic process. Dendritic cells (DCs) are the most potent professional antigen-presenting cells that bridge innate and adaptive immunity. Also, they exert a crucial role in the immune surveillance of the lung, where they are strategically placed in the airway epithelium and interstitium. Immature DCs accumulate in the IPF lung close to areas of epithelial hyperplasia and fibrosis. Conversely, mature DCs are concentrated in well-organized lymphoid follicles along with T and B cells and bronchoalveolar lavage of IPF patients. We have recently shown that all sub-types of peripheral blood DCs (including conventional and plasmacytoid DCs) are severely depleted in therapy naïve IPF patients. Also, the low frequency of conventional CD1c+ DCs is predictive of a worse prognosis. The purpose of this mini-review is to focus on the main evidence on DC involvement in IPF pathogenesis. Unanswered questions and opportunities for future research ranging from a better understanding of their contribution to diagnosis and prognosis to personalized DC-based therapies will be explored
A bird's eye view on the role of dendritic cells in SARS-CoV-2 infection: Perspectives for immune-based vaccines
Coronavirus disease-19 (COVID-19) is a complex disorder caused by the pandemic diffusion of a novel coronavirus named SARS-CoV-2. Clinical manifestations vary from silent infection to severe pneumonia, disseminated thrombosis, multi-organ failure, and death. COVID-19 pathogenesis is still not fully elucidated, while increasing evidence suggests that disease phenotypes are strongly related to the virus-induced immune system's dysregulation. Indeed, when the virus-host cross talk is out of control, the occurrence of an aberrant systemic inflammatory reaction, named “cytokine storm,” leads to a detrimental impairment of the adaptive immune response. Dendritic cells (DCs) are the most potent antigen-presenting cells able to support innate immune and promote adaptive responses. Besides, DCs play a key role in the anti-viral defense. The aim of this review is to focus on DC involvement in SARS-CoV-2 infection to better understand pathogenesis and clinical behavior of COVID-19 and explore potential implications for immune-based therapy strategies
Alpha-1-antitrypsin deficiency and bronchiectasis: A concomitance or a real association?
Alpha-1-antitrypsin deficiency (AATd) is a hereditary disease, mainly characterized by early onset and the lower lobes’ predominant emphysema. Bronchiectasis is characterized by dilatation of the bronchial wall and a clinical syndrome whose features are a cough, sputum production and frequent respiratory exacerbations. In the literature, there are many papers concerning these two clinical entities, but there is still a lot of debate about a possible association between them, in particular about the frequency of their association and causal links. The aim of this short communication is to show the literature reports about the association between AATd and bronchiectasis to establish the state of the art and possible future developments in this research field
- …
