95 research outputs found
Variation of DNA methylation and phenotypic traits following unilateral sexual polyploidization in Medicago
Sexual hybridization is an important generator of biodiversity and a powerful breeding tool. Hybridization can also overcome ploidy barriers when it involves 2n gametes, as in the case of unilateral sexual polyploidization (USP) that has been utilized in several crops, among which alfalfa. This research was aimed at gaining insights into the effects of USP on genome methylation and on phenotypic traits in alfalfa, an important forage species. The Methylation-Sensi- tive Amplified Polymorphism technique was used to estimate the cytosine methylation changes occurring in a tetraploid (2n = 4x = 32) USP progeny from crosses between a diploid Medicago sativa subsp. falcata genotype that produces 2n eggs and a cultivated tetraploid Medicago sativa subsp. sativa variety. De novo methylation or demethylation in the USP progeny were observed for 13% of the detected genomic sites, indicating that methylation changes can be relevant. USP plants showed larger surface area of the leaf epidermis cells than both parents, but this did not result in larger leaf size or higher plant biomass. They displayed significant higher ovule sterility than the tetraploid parent, but normal fertility was observed in crosses with unrelated male testers. We conclude that hybridization and sexual polyploidization resulted in novel variation in terms of remodeling of the methylation landscape as well as changes in phenotypic traits in alfalfa
PANEV: an R package for a pathway-based network visualization
BACKGROUND: During the last decade, with the aim to solve the challenge of post-genomic and transcriptomic data mining, a plethora of tools have been developed to create, edit and analyze metabolic pathways. In particular, when a complex phenomenon is considered, the creation of a network of multiple interconnected pathways of interest could be useful to investigate the underlying biology and ultimately identify functional candidate genes affecting the trait under investigation. RESULTS: PANEV (PAthway NEtwork Visualizer) is an R package set for gene/pathway-based network visualization. Based on information available on KEGG, it visualizes genes within a network of multiple levels (from 1 to n) of interconnected upstream and downstream pathways. The network graph visualization helps to interpret functional profiles of a cluster of genes. CONCLUSIONS: The suite has no species constraints and it is ready to analyze genomic or transcriptomic outcomes. Users need to supply the list of candidate genes, specify the target pathway(s) and the number of interconnected downstream and upstream pathways (levels) required for the investigation. The package is available at https://github.com/vpalombo/PANEV
Methylation content sensitive enzyme ddRAD (MCSeEd): a reference-free, whole genome profiling system to address cytosine/adenine methylation changes
Methylation content sensitive enzyme ddRAD (MCSeEd): a reference-free, whole genome profiling system to address cytosine/adenine methylation changes
Methods for investigating DNA methylation nowadays either require a reference genome and high coverage, or investigate only CG methylation. Moreover, no large-scale analysis can be performed for N6-methyladenosine (6 mA) at an affordable price. Here we describe the methylation content sensitive enzyme double-digest restriction-site-associated DNA (ddRAD) technique (MCSeEd), a reduced-representation, reference-free, cost-effective approach for characterizing whole genome methylation patterns across different methylation contexts (e.g., CG, CHG, CHH, 6 mA). MCSeEd can also detect genetic variations among hundreds of samples. MCSeEd is based on parallel restrictions carried out by combinations of methylation insensitive and sensitive endonucleases, followed by next-generation sequencing. Moreover, we present a robust bioinformatic pipeline (available at https://bitbucket.org/capemaster/mcseed/src/master/) for differential methylation analysis combined with single nucleotide polymorphism calling without or with a reference genome
Gallop racing shifts mature mRNA towards introns: Does exercise-induced stress enhance genome plasticity?
Physical exercise is universally recognized as stressful. Among the “sport species”, the horse is probably the most appropriate model for investigating the genomic response to stress due to the homogeneity of its genetic background. The aim of this work is to dissect the whole transcription modulation in Peripheral Blood Mononuclear Cells (PBMCs) after exercise with a time course framework focusing on unexplored regions related to introns and intergenic portions. PBMCs NGS from five 3 year old Sardinian Anglo-Arab racehorses collected at rest and after a 2000 m race was performed. Apart from differential gene expression ascertainment between the two time points the complexity of transcription for alternative transcripts was identified. Interestingly, we noted a transcription shift from the coding to the non-coding regions. We further investigated the possible causes of this phenomenon focusing on genomic repeats, using a differential expression approach and finding a strong general up-regulation of repetitive elements such as LINE. Since their modulation is also associated with the “exonization”, the recruitment of repeats that act with regulatory functions, suggesting that there might be an active regulation of this transcriptional shift. Thanks to an innovative bioinformatic approach, our study could represent a model for the transcriptomic investigation of stress
Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season
Shedding light on cashmere goat hair follicle biology: From morphology analyses to transcriptomic landascape
Background: Cashmere goat is known for its precious undercoat. Being photoperiod-dictated, cashmere growth has been studied focusing mainly on hair follicle cycle phases (anagen, catagen and telogen). An accurate molecular knowledge of the goat hair follicle cycle, disentangling gene expression changes during phases and recognizing timing boundaries, could be useful to improve cashmere goat management and ultimately cashmere production. Results: To better describe goat's hair follicle transcriptome we applied RNA-sequencing to isolated hair follicles from five Italian cashmere goats, during the anagen and catagen phase, identifying total of 214 differentially expressed genes (DEGs): 97 were up-regulated while 117 were down-regulated in catagen with respect to anagen. Gene Ontology and pathway analysis were performed. We detected 144 significant pathways spanning from estrogen, pluripotency of stem cells, thermogenesis and fatty acid metabolism that were strongly expressed during the hair follicle phases analysed. Finally, we validated promising DEGs by RT-qPCR in the same set of samples as well as in hair follicles and entire skin biopsies of another cashmere goats cohort accounting for early anagen, anagen, early catagen, and catagen phases. Conclusions: As in the isolated hair follicles, some target genes were homogenously modulated during the four hair follicle phases. Ceruloplasmin (CP) and Keratin 4 (K4), confirmed their clear cut expression between growing and resting phase. In fact, K4 was almost absent in catagen phases while CP was barely expressed in anagen phases. In particular, the strong expression of K4 in early anagen makes it an eligible marker to track the beginning of a new hair cycle, and therefore defining the optimum time for cashmere harvesting
Differential Expression Pattern of Retroviral Envelope Gene in the Equine Placenta
Endogenous retroviruses (ERVs) are proviral phases of exogenous retroviruses, which have coevolved with vertebrate genomes for millions of years. The conservation of ERV genes throughout evolution suggests their beneficial effects on their hosts' survival. An example of such positive selection is demonstrated by the syncytin gene, which encodes a protein with affinity for various mammalian placentas that is involved in the formation of syncytiotrophoblasts. Although the horse has an epitheliochorial placenta, in which the fetal trophoblasts are simply apposed to the intact uterine epithelium, we have previously demonstrated that the equine ERV (EqERV) env RNA is unexpectedly expressed in placental tissue. In the present study, we investigated the mRNA expression pattern of the EqERV env gene in different parts of the equine placenta, to gain more insight into its putative role in the fetal–maternal relationship. To this end, we used reverse transcription–quantitative PCR (RT–qPCR) and in situ hybridization assays to analyze different target areas of the equine placenta. The retroviral env gene is expressed in the equine placenta, even though there is no syncytium or erosion of the uterine endometrium. The gene is also expressed in all the sampled areas, although with some quantitative differences. We suggest that these differences are attributable to variations in the density, height, and degree of morphological complexity of the chorionic villi forming the microcotyledons. The involvement of the EqERV env gene in different functional pathways affecting the fetus–mother relationship can be hypothesized
Long-read RNA Sequencing Improves the Annotation of the Equine Transcriptome
A high-quality reference genome assembly, a biobank of diverse equine tissues from the Functional Annotation of the Animal Genome (FAANG) initiative, and incorporation of long-read sequencing technologies, have enabled efforts to build a comprehensive and tissue-specific equine transcriptome. The equine FAANG transcriptome reported here provides up to 45% improvement in transcriptome completeness across tissue types when compared to either RefSeq or Ensembl transcriptomes. This transcriptome also provides major improvements in the identification of alternatively spliced isoforms, novel noncoding genes, and 3’ transcription termination site (TTS) annotations. The equine FAANG transcriptome will empower future functional studies of important equine traits while providing future opportunities to identify allele-specific expression and differentially expressed genes across tissues
Genome assembly and transcriptome resource for river buffalo, Bubalus bubalis (2n = 50)
Water buffalo is a globally important species for agriculture and local economies. A de novo assembled, well annotated, reference sequence for the water buffalo is an important prerequisite for studying the biology of this species, and necessary to manage genetic diversity and to use modern breeding and genomic selection techniques. However, no such genome assembly has been previously reported. There are two species of domestic water buffalo, the river (2n = 50) and the swamp (2n = 48) buffalo. Here we describe a draft quality reference sequence for the river buffalo created from Illumina GA and Roche 454 short read sequences using the MaSuRCA assembler. The assembled sequence is 2.83 Gb, consisting of 366,983 scaffolds with a scaffold N50 of 1.41 Mb and contig N50 of 21,398 bp. Annotation of the genome was supported by transcriptome data from 30 tissues, and identified 21,711 predicted protein coding genes. Searches for complete mammalian BUSCO gene groups found 98.6% of curated single copy orthologs present among predicted genes, which suggests a high level of completeness of the genome. The annotated sequence is available from NCBI at accession GCA_000471725.1.John L. Williams, Daniela Iamartino, Kim D. Pruitt, Tad Sonstegard, Timothy P.L. Smith, Wai Yee Low, Tommaso Biagini, Lorenzo Bomba, Stefano Capomaccio, Bianca Castiglioni, Angelo Coletta, Federica Corrado, Fabrizio Ferré, Leopoldo Iannuzzi, Cynthia Lawley, Nicolò Macciotta, Matthew McClure, Giordano Mancini, Donato Matassino, Raffaele Mazza, Marco Milanesi, Bianca Moioli, Nicola Morandi, Luigi Ramunno, Vincenzo Peretti, Fabio Pilla, Paola Ramelli, Steven Schroeder, Francesco Strozzi, Francoise Thibaud-Nissen, Luigi Zicarelli, Paolo Ajmone-Marsan, Alessio Valentini, Giovanni Chillemi, and Aleksey Zimi
- …
