1,986 research outputs found

    Ramsey-type theorems for lines in 3-space

    Full text link
    We prove geometric Ramsey-type statements on collections of lines in 3-space. These statements give guarantees on the size of a clique or an independent set in (hyper)graphs induced by incidence relations between lines, points, and reguli in 3-space. Among other things, we prove that: (1) The intersection graph of n lines in R^3 has a clique or independent set of size Omega(n^{1/3}). (2) Every set of n lines in R^3 has a subset of n^{1/2} lines that are all stabbed by one line, or a subset of Omega((n/log n)^{1/5}) such that no 6-subset is stabbed by one line. (3) Every set of n lines in general position in R^3 has a subset of Omega(n^{2/3}) lines that all lie on a regulus, or a subset of Omega(n^{1/3}) lines such that no 4-subset is contained in a regulus. The proofs of these statements all follow from geometric incidence bounds -- such as the Guth-Katz bound on point-line incidences in R^3 -- combined with Tur\'an-type results on independent sets in sparse graphs and hypergraphs. Although similar Ramsey-type statements can be proved using existing generic algebraic frameworks, the lower bounds we get are much larger than what can be obtained with these methods. The proofs directly yield polynomial-time algorithms for finding subsets of the claimed size.Comment: 18 pages including appendi

    Finding Multiple New Optimal Locations in a Road Network

    Full text link
    We study the problem of optimal location querying for location based services in road networks, which aims to find locations for new servers or facilities. The existing optimal solutions on this problem consider only the cases with one new server. When two or more new servers are to be set up, the problem with minmax cost criteria, MinMax, becomes NP-hard. In this work we identify some useful properties about the potential locations for the new servers, from which we derive a novel algorithm for MinMax, and show that it is efficient when the number of new servers is small. When the number of new servers is large, we propose an efficient 3-approximate algorithm. We verify with experiments on real road networks that our solutions are effective and attains significantly better result quality compared to the existing greedy algorithms

    Colorful Strips

    Full text link
    Given a planar point set and an integer kk, we wish to color the points with kk colors so that any axis-aligned strip containing enough points contains all colors. The goal is to bound the necessary size of such a strip, as a function of kk. We show that if the strip size is at least 2k12k{-}1, such a coloring can always be found. We prove that the size of the strip is also bounded in any fixed number of dimensions. In contrast to the planar case, we show that deciding whether a 3D point set can be 2-colored so that any strip containing at least three points contains both colors is NP-complete. We also consider the problem of coloring a given set of axis-aligned strips, so that any sufficiently covered point in the plane is covered by kk colors. We show that in dd dimensions the required coverage is at most d(k1)+1d(k{-}1)+1. Lower bounds are given for the two problems. This complements recent impossibility results on decomposition of strip coverings with arbitrary orientations. Finally, we study a variant where strips are replaced by wedges

    Moving Walkways, Escalators, and Elevators

    Full text link
    We study a simple geometric model of transportation facility that consists of two points between which the travel speed is high. This elementary definition can model shuttle services, tunnels, bridges, teleportation devices, escalators or moving walkways. The travel time between a pair of points is defined as a time distance, in such a way that a customer uses the transportation facility only if it is helpful. We give algorithms for finding the optimal location of such a transportation facility, where optimality is defined with respect to the maximum travel time between two points in a given set.Comment: 16 pages. Presented at XII Encuentros de Geometria Computacional, Valladolid, Spai

    Constructing topological models by symmetrization: A PEPS study

    Get PDF
    Symmetrization of topologically ordered wavefunctions is a powerful method for constructing new topological models. Here, we study wavefunctions obtained by symmetrizing quantum double models of a group GG in the Projected Entangled Pair States (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group G~\tilde G which is always non-abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wavefunctions in the same phase as the double model of G~\tilde G. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of G~\tilde G.Comment: 10 pages. v2: accepted versio

    Large Coercivity in Nanostructured Rare-earth-free MnxGa Films

    Full text link
    The magnetic hysteresis of MnxGa films exhibit remarkably large coercive fields as high as 2.5 T when fabricated with nanoscale particles of a suitable size and orientation. This coercivity is an order of magnitude larger than in well-ordered epitaxial film counterparts and bulk materials. The enhanced coercivity is attributed to the combination of large magnetocrystalline anisotropy and ~ 50 nm size nanoparticles. The large coercivity is also replicated in the electrical properties through the anomalous Hall effect. The magnitude of the coercivity approaches that found in rare-earth magnets, making them attractive for rare-earth-free magnet applications

    Practical learning method for multi-scale entangled states

    Full text link
    We describe a method for reconstructing multi-scale entangled states from a small number of efficiently-implementable measurements and fast post-processing. The method only requires single particle measurements and the total number of measurements is polynomial in the number of particles. Data post-processing for state reconstruction uses standard tools, namely matrix diagonalisation and conjugate gradient method, and scales polynomially with the number of particles. Our method prevents the build-up of errors from both numerical and experimental imperfections

    Optical Propagation and Communication

    Get PDF
    Contains research objectives and summary of research on four research projects.National Aeronautics and Space Administration (Grant NGR 22-009-013)U.S. Navy - Office of Naval Research (Contract N00014-76-C-0605)Joint Services Electronics Program (Contract DAAB07-76-C-1400)National Science Foundation (Grant ENG74-00131-AO2)U. S. Air Force - Electronic Systems Division (Contract F19628-76-C-0054)National Science Foundation (Grant ENG74-03996-A1

    The Complexity of Drawing Graphs on Few Lines and Few Planes

    Full text link
    It is well known that any graph admits a crossing-free straight-line drawing in R3\mathbb{R}^3 and that any planar graph admits the same even in R2\mathbb{R}^2. For a graph GG and d{2,3}d \in \{2,3\}, let ρd1(G)\rho^1_d(G) denote the minimum number of lines in Rd\mathbb{R}^d that together can cover all edges of a drawing of GG. For d=2d=2, GG must be planar. We investigate the complexity of computing these parameters and obtain the following hardness and algorithmic results. - For d{2,3}d\in\{2,3\}, we prove that deciding whether ρd1(G)k\rho^1_d(G)\le k for a given graph GG and integer kk is R{\exists\mathbb{R}}-complete. - Since NPR\mathrm{NP}\subseteq{\exists\mathbb{R}}, deciding ρd1(G)k\rho^1_d(G)\le k is NP-hard for d{2,3}d\in\{2,3\}. On the positive side, we show that the problem is fixed-parameter tractable with respect to kk. - Since RPSPACE{\exists\mathbb{R}}\subseteq\mathrm{PSPACE}, both ρ21(G)\rho^1_2(G) and ρ31(G)\rho^1_3(G) are computable in polynomial space. On the negative side, we show that drawings that are optimal with respect to ρ21\rho^1_2 or ρ31\rho^1_3 sometimes require irrational coordinates. - Let ρ32(G)\rho^2_3(G) be the minimum number of planes in R3\mathbb{R}^3 needed to cover a straight-line drawing of a graph GG. We prove that deciding whether ρ32(G)k\rho^2_3(G)\le k is NP-hard for any fixed k2k \ge 2. Hence, the problem is not fixed-parameter tractable with respect to kk unless P=NP\mathrm{P}=\mathrm{NP}

    Coherent acoustic vibration of metal nanoshells

    Full text link
    Using time-resolved pump-probe spectroscopy we have performed the first investigation of the vibrational modes of gold nanoshells. The fundamental isotropic mode launched by a femtosecond pump pulse manifests itself in a pronounced time-domain modulation of the differential transmission probed at the frequency of nanoshell surface plasmon resonance. The modulation amplitude is significantly stronger and the period is longer than in a gold nanoparticle of the same overall size, in agreement with theoretical calculations. This distinct acoustical signature of nanoshells provides a new and efficient method for identifying these versatile nanostructures and for studying their mechanical and structural properties.Comment: 5 pages, 3 figure
    corecore