1,639 research outputs found
A tunable rf SQUID manipulated as flux and phase qubit
We report on two different manipulation procedures of a tunable rf SQUID.
First, we operate this system as a flux qubit, where the coherent evolution
between the two flux states is induced by a rapid change of the energy
potential, turning it from a double well into a single well. The measured
coherent Larmor-like oscillation of the retrapping probability in one of the
wells has a frequency ranging from 6 to 20 GHz, with a theoretically expected
upper limit of 40 GHz. Furthermore, here we also report a manipulation of the
same device as a phase qubit. In the phase regime, the manipulation of the
energy states is realized by applying a resonant microwave drive. In spite of
the conceptual difference between these two manipulation procedures, the
measured decay times of Larmor oscillation and microwave-driven Rabi
oscillation are rather similar. Due to the higher frequency of the Larmor
oscillations, the microwave-free qubit manipulation allows for much faster
coherent operations.Comment: Proceedings of Nobel Symposium "Qubits for future quantum computers",
Goeteborg, Sweden, May 25-28, 2009; to appear in Physica Script
Anticipated Synchronization in a Biologically Plausible Model of Neuronal Motifs
Two identical autonomous dynamical systems coupled in a master-slave
configuration can exhibit anticipated synchronization (AS) if the slave also
receives a delayed negative self-feedback. Recently, AS was shown to occur in
systems of simplified neuron models, requiring the coupling of the neuronal
membrane potential with its delayed value. However, this coupling has no
obvious biological correlate. Here we propose a canonical neuronal microcircuit
with standard chemical synapses, where the delayed inhibition is provided by an
interneuron. In this biologically plausible scenario, a smooth transition from
delayed synchronization (DS) to AS typically occurs when the inhibitory
synaptic conductance is increased. The phenomenon is shown to be robust when
model parameters are varied within physiological range. Since the DS-AS
transition amounts to an inversion in the timing of the pre- and post-synaptic
spikes, our results could have a bearing on spike-timing-dependent-plasticity
models
Absence of Magnetic Fluctuations in the Ferromagnetic/Topological Heterostructure EuS/BiSe
Heterostructures of topological insulators and ferromagnets offer new
opportunities in spintronics and a route to novel anomalous Hall states. In one
such structure, EuS/BiSe a dramatic enhancement of the Curie
temperature was recently observed. We performed Raman spectroscopy on a similar
set of thin films to investigate the magnetic and lattice excitations.
Interfacial strain was monitored through its effects on the BiSe
phonon modes while the magnetic system was probed through the EuS Raman mode.
Despite its appearance in bare EuS, the heterostructures lack the corresponding
EuS Raman signal. Through numerical calculations we rule out the possibility of
Fabry-Perot interference suppressing the mode. We attribute the absence of a
magnetic signal in EuS to a large charge transfer with the BiSe.
This could provide an additional pathway for manipulating the magnetic,
optical, or electronic response of topological heterostructures.Comment: 6 pages, 3 figure
Deep-well ultrafast manipulation of a SQUID flux qubit
Superconducting devices based on the Josephson effect are effectively used
for the implementation of qubits and quantum gates. The manipulation of
superconducting qubits is generally performed by using microwave pulses with
frequencies from 5 to 15 GHz, obtaining a typical operating clock from 100MHz
to 1GHz. A manipulation based on simple pulses in the absence of microwaves is
also possible. In our system a magnetic flux pulse modifies the potential of a
double SQUID qubit from a symmetric double well to a single deep well
condition. By using this scheme with a Nb/AlOx/Nb system we obtained coherent
oscillations with sub-nanosecond period (tunable from 50ps to 200ps), very fast
with respect to other manipulating procedures, and with a coherence time up to
10ns, of the order of what obtained with similar devices and technologies but
using microwave manipulation. We introduce the ultrafast manipulation
presenting experimental results, new issues related to this approach (such as
the use of a feedback procedure for cancelling the effect of "slow"
fluctuations), and open perspectives, such as the possible use of RSFQ logic
for the qubit control.Comment: 9 pages, 7 figure
Static flux bias of a flux qubit using persistent current trapping
Qubits based on the magnetic flux degree of freedom require a flux bias,
whose stability and precision strongly affect the qubit performance, up to a
point of forbidding the qubit operation. Moreover, in the perspective of
multiqubit systems, it must be possible to flux-bias each qubit independently,
hence avoiding the traditional use of externally generated magnetic fields in
favour of on-chip techniques that minimize cross-couplings. The solution
discussed in this paper exploits a persistent current, trapped in a
superconducting circuit integrated on chip that can be inductively coupled with
an individual qubit. The circuit does not make use of resistive elements that
can be detrimental for the qubit coherence. The trapping procedure allows to
control and change stepwise the amount of stored current; after that, the
circuit can be completely disconnected from the external sources. We show in a
practical case how this works and how to drive the bias circuit at the required
value.Comment: 5 figures submitted to Superconductor Science and Technolog
Inhibitory loop robustly induces anticipated synchronization in neuronal microcircuits
We investigate the synchronization properties between two excitatory coupled neurons in the presence of an inhibitory loop mediated by an interneuron. Dynamic inhibition together with noise independently applied to each neuron provide phase diversity in the dynamics of the neuronal motif. We show that the interplay between the coupling strengths and the external noise controls the phase relations between the neurons in a counterintuitive way. For a master-slave configuration (unidirectional coupling) we find that the slave can anticipate the master, on average, if the slave is subject to the inhibitory feedback. In this nonusual regime, called anticipated synchronization (AS), the phase of the postsynaptic neuron is advanced with respect to that of the presynaptic neuron. We also show that the AS regime survives even in the presence of unbalanced bidirectional excitatory coupling. Moreover, for the symmetric mutually coupled situation, the neuron that is subject to the inhibitory loop leads in phase.We gratefully acknowledge CNPq Grants No. 480053/2013-8 and No. 310712/2014-9, FACEPE Grant No. APQ-0826-1.05/15, and CAPES Grant No. PVE 88881.068077/2014-01 for financial support. This article was produced as part of the activities of FAPESP Research, Innovation and Dissemination Center for Neuromathematics (Grant No. 2013/07699-0, S.Paulo Research Foundation) and it was partially funded by the Ministerio de Economía y Competitividad, España, through Project No. TEC2016-80063.Peer reviewe
- …
