368 research outputs found

    Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate

    Get PDF
    St. John’s Wort (Hypericum perforatum) is a perennial herb able to produce water-soluble active ingredients (a.i.), mostly in flowers, with a wide range of medicinal and biotechnological uses. However, information about the ability of arbuscular mycorrhizal fungi (AMF) to affect its biomass accumulation, flower production, and concentration of a.i. under contrasting nutrient availability is still scarce. In the present experiment, we evaluated the role of AMF on growth, flower production, and concentration of bioactive secondary metabolites (hypericin, pseudohypericin, and hyperforin) of H. perforatum under contrasting P availability. AMF stimulated the production of aboveground biomass under low P conditions and increased the production of root biomass. AMF almost halved the number of flowers per plant by means of a reduction of the number of flower-bearing stems per plant under high P availability and through a lower number of flowers per stem in the low-P treatment. Flower hyperforin concentration was 17.5% lower in mycorrhizal than in non-mycorrhizal plants. On the contrary, pseudohypericin and hypericin concentrations increased by 166.8 and 279.2%, respectively, with AMF under low P availability, whereas no effect of AMF was found under high P availability. These results have implications for modulating the secondary metabolite production of H. perforatum. However, further studies are needed to evaluate the competition for photosynthates between AMF and flowers at different nutrient availabilities for both plant and AM fungus

    Crop rotation, nitrogen fertilization and genotype effects on durum wheat productive characteristics

    Get PDF
    A field trial was performed in 2000/01 and 2001/02 in the experimental farm “Sparacia” (Cammarata – AG – Sicily) in order to evaluate the qualitative and quantitative response of four varieties of durum wheat when grown after a legume crop (field pea) or in rotation with itself and when submitted to different N-fertilization levels: no fertilization (N0, control), 60 kg ha-1 (N 60, rate advised by the EC n. 2078/92 for the Sicilian territory) and 120 kg ha-1 (N 120, fertilization rate commonly used under the “traditional” cropping technique). In the first trial year, the fertilized trial expressed a better yield performance than the control, but in 2001/02, characterized by severe and prolonged dry periods, the effect of crop rotation and variety was shown to be more important

    Quality Characteristics of Wholemeal Flour and Bread from Durum Wheat (Triticum turgidum L subsp. durum Desf.) after Field Treatment with Plant Water Extracts

    Get PDF
    The use of selected plant water extracts to control pests and weeds is gaining growing attention in organic and sustainable agriculture, but the effects that such extracts may exert on the quality aspects of durum wheat are still unexplored. In 2014, 5 plant water extracts (Artemisia arborescens, Euphorbia characias, Rhus coriaria, Thymus vulgaris, Lantana camara) were prepared and distributed on durum wheat cv Valbelice to evaluate their potential herbicidal effects. After crop harvesting, the major physicochemical and technological parameters of wholemeal flours obtained from each treatment were measured and compared with those from chemical weeding and untreated controls. A baking test was also performed to evaluate the breadmaking quality. In wholemeal flours obtained after the treatment with plant extracts protein and dry gluten content were higher than in control and chemical weeding. Wholemeal flours obtained after chemical weeding reached the highest Mixograph parameters, and that from durum wheat treated with R. coriaria extract demonstrated a very high α-amylase activity. We concluded that the treatments with plant water extracts may influence many quality traits of durum wheat. This occurrence must be taken into account in overall decisions concerning the use of plant extracts in pest and weed management practice

    Biogeographic characterization of essential fish habitats affected by human activities in the coastal zone of Puerto Rico

    Get PDF
    The overall purpose of this project was to collect available information on the characteristics of essential fish habitats in protected and non-protected marine areas around the islands of Puerto Rico. Specifically, this project compiled historical information on benthic habitats and the status of marine resources into a Geographic Information System (GIS) by digitizing paper copies of existing marine geologic maps that were developed for the Caribbean Fishery Management Council (CFMC) for areas around the Commonwealth of Puerto Rico. In addition, information on benthic habitat types, Essential Fish Habitat (EFH) requirements, and fishing and non-fishing impacts to marine resources were compiled for two priority areas: La Parguera and Vieques. The information obtained will help to characterize and select habitats for future monitoring of impacts of fishing and non-fishing activities and to develop management recommendations for conservation of important marine habitats. The project focused specifically on areas identified as priorities for conservation by the Puerto Rico Department of Natural and Environmental Resources (DNER) and the Local Action Strategy Overfishing Group

    Cultivating for the industry: Cropping experiences with hypericum perforatum l. in a mediterranean environment

    Get PDF
    Hypericum perforatum is an intensively studied medicinal plant, and much experimental activity has been addressed to evaluate its bio-agronomical and phytochemical features as far. In most cases, plant material used for experimental purposes is obtained from wild populations or, alternatively, from individuals grown in vases and/or pots. When Hypericum is addressed to industrial purposes, the most convenient option for achieving satisfactory amounts of plant biomass is field cultivation. Pot cultivation and open field condition, however, are likely to induce different responses on plant’s metabolism, and the obtained yield and composition are not necessarily the same. To compare these management techniques, a 4-year cultivation trial (2013–2016) was performed, using three Hypericum biotypes obtained from different areas in Italy: PFR-TN, from Trento province, Trentino; PFR-SI, from Siena, Tuscany; PFR-AG, from Agrigento province, Sicily. Both managements gave scarce biomass and flower yields at the first year, whereas higher yields were measured at the second year (in open field), and at the third year (in pots). Plant ageing induced significant differences in phytochemical composition, and the total amount of phenolic substances was much higher in 2015 than in 2014. A different performance of genotypes was observed; the local genotype was generally more suitable for field cultivation, whereas the two non-native biotypes performed better in pots. Phytochemical profile of in-pots plants was not always reflecting the actual situation of open field. Consequently, when cultivation is intended for industrial purposes, accurate quality checks of the harvested material are advised

    The Small RNA ErsA Impacts the Anaerobic Metabolism of Pseudomonas aeruginosa Through Post-Transcriptional Modulation of the Master Regulator Anr

    Get PDF
    Pseudomonas aeruginosa is one of the most critical opportunistic pathogens in humans, able to cause both lethal acute and chronic lung infections. In previous work, we indicated that the small RNA ErsA plays a role in the regulatory network of P. aeruginosa pathogenicity in airways infection. To give further insight into the lifestyle functions that could be either directly or indirectly regulated by ErsA during infection, we reanalyzed the categories of genes whose transcription appeared dysregulated in an ersA knock-out mutant of the P. aeruginosa PAO1 reference strain. This preliminary analysis indicated ErsA as a candidate co-modulator of denitrification and in general, the anaerobiosis response, a characteristic physiologic state of P. aeruginosa during chronic infection of the lung of cystic fibrosis (CF) patients. To explain the pattern of dysregulation of the anaerobic-lifestyle genes in the lack of ErsA, we postulated that ErsA regulation could target the expression of Anr, a well-known transcription factor that modulates a broad regulon of anoxia-responsive genes, and also Dnr, required for the transcription activation of the denitrification machinery. Our results show that ErsA positively regulates Anr expression at the post-transcriptional level while no direct ErsA-mediated regulatory effect on Dnr was observed. However, Dnr is transcriptionally downregulated in the absence of ErsA and this is consistent with the well-characterized regulatory link between Anr and Dnr. Anr regulatory function is critical for P. aeruginosa anaerobic growth, both through denitrification and fermentation of arginine. Interestingly, we found that, differently from the laboratory strain PAO1, ErsA deletion strongly impairs the anaerobic growth by both denitrification and arginine fermentation of the RP73 clinical isolate, a multi-drug resistant P. aeruginosa CF-adapted strain. This suggests that P. aeruginosa adaptation to CF lung might result in a higher dependence on ErsA for the transduction of the multiple signals to the regulatory network of key functions for survivance in such a complex environment. Together, our results suggest that ErsA takes an upper place in the regulatory network of airways infection, transducing host inputs to biofilm-related factors, as underlined in our previous reports, and to functions that allow P. aeruginosa to thrive in low-oxygen conditions

    Optimizing Hyssop (Hyssopus officinalis L.) Cultivation: Effects of Different Manures on Plant Growth and Essential Oil Yield

    Get PDF
    Using animal manure in organic systems can improve the quality of agricultural products, especially medicinal plants. In this study, the impact of different types and levels of animal manures on hyssop plant biomass and essential oil yield and profile was assessed. Three supply levels (Low, Medium, and High) were tested for poultry (Np), sheep (Ns), and cattle (Nc) manures. Through GC-MS and GC-FID analysis, 24 chemical constituents were identified in the hyssop essential oil, accounting for 93.7–97.8% of the total composition. The Medium-Nc and High-Np treatments had essential oil content ranging from 0.98% to 1.45%, significantly different from the control treatment at 1.17%. Essential oil yield in Low-Np, Medium-Np, and High-Np was 47.5, 53.8, and 49.2 kg ha−1, respectively, showing increases of 42.5%, 61.6%, and 47.7% compared to the control. Medium-Nc and High-Nc treatments had the most potent antioxidant properties compared to the control. Different amounts of poultry, sheep, and cattle manures led to distinct differences in essential oil compounds, categorizing the manure treatments into three groups. Medium-Np had 44% more air-dried biomass than the control, while no significant difference was found in air-dried herbal product levels among sheep and cattle manures. Taken together, farmers focusing on biomass and essential oil should opt for Medium poultry manure. The pharmaceutical industry should explore other fertilizer options based on secondary metabolite needs

    Phenological Assessment of Hops (Humulus lupulus L.) Grown in Semi-Arid and Subtropical Climates Through BBCH Scale and a Thermal-Based Growth Model

    Get PDF
    Although usually studied as separate processes, plant growth and plant development are strictly interrelated. The BBCH scale (“Biologische Bundesanstalt, Bundessortenamt, and CHemical industry”) has become one of the primary classification systems for documenting the growth and developmental stages of many plant species. Specifically, the BBCH scale for hops (Humulus lupulus L.) separately describes growth and development during the vegetative stage. This study aims to develop an integrated approach to better understand the interaction between vertical growth rates and vegetative development in hops. Growth rates and development patterns of the Cascade hop cultivar were assessed in semi-arid (Sicily, Italy) and subtropical (Florida, USA) climates. The Gompertz model accurately described vertical growth, while a modified Gaussian model effectively captured hop growth rates (HGRs). A strong correlation between growth and developmental stages was identified, allowing for the inference of growth dynamics from developmental observations during the vegetative phase. Growth and developmental stages showed a 71% match across both environments, with minor phase shifts influenced by growing conditions. From an applied perspective, understanding the growth characteristics associated with developmental stages is crucial for addressing challenges posed by pests and diseases in emerging hop-growing regions. This integrated approach offers valuable insights into optimizing cultivation practices for diverse environmental conditions

    Organic manures enhance biomass and improve content, chemical compounds of essential oil and antioxidant capacity of medicinal plants: A review

    Get PDF
    The current farming systems strongly depend on chemical fertilizers (CF), which are widely applied to increase crop yield worldwide. However, although CF enhance crop yield in the short term, their excessive and long-term application can have adverse effects on environmental and human health. One of the most important goals of sustainable agriculture is substituting CF with organic manures. Organic manures can be used as a low-cost and safe alternative for CF. They contain essential nutrients for crop growth, improve soil conditions and nutrient availability, increase plant growth, and ultimately enhance yield. The application of organic manures to medicinal plants (MP) is more critical than to other plants, because organic manures not only enhance the growth and productivity of MP but also modify quality of their products. In this review, the effect of different types of organic manures on the biomass, content and chemical compositions of essential oil and antioxidant activity of various MP has been investigated. The included information was gathered from scientific databases such as Science Direct, Google Scholar, PubMed, and Scopus. Many of the collected studies showed that organic manures increase biomass and improve the quality of these plants. The findings of this review indicate that broiler litter (BL) and compost (C) are highly recommended as organic manures to promote biomass. Moreover, C, sheep manure, and vermicompost (VC) are suggested as the optimal organic manures for enhancing the essential oil content. Organic manures significantly changed the aroma profile of the essential oils and in many cases, they enhanced major chemical compositions. The usage of VC raised the content of the linalool of studied MP. Most of the organic manures, especially BL, VC, farmyard manure, and poultry manure increased the antioxidant activity of these plants. Hence, the utilization of organic manures can be recommended for productivity enhancement and quality improvement of MP
    corecore