691 research outputs found
Intervention strategies for children and adolescent with disorders: from intrapsychic to transactional perspective
A large amount of studies and clinical evidence document the importance of infancy and early childhood influences on long term developmental
trajectories toward mental health or psychopathology (Sameroff, 2000, 2010). Without healthy, productive adults no culture could continue to be successful. This concern is the main motivation for society to support child development research. Although the academic interests of contemporary developmental researchers range widely in cognitive and socialemotional domains, the political justification for supporting such studies is that they will lead to the understanding and ultimate prevention of behavioural problems that are costly to society. With these motivations and support, there have been major advances in our understanding of the intellectual, emotional, and social behaviour of children, adolescents and adults.
This progress has forced conceptual reorientations from a unidirectionalunderstanding of development (e.g., parents affect children and not vice versa) toward a bidirectional conceptualization of development. Childrenare now assumed to affect and even select their environments as much as their environments affect their behaviour. Indeed, key among many of the most influential developmental theories in the past several decades is the assumption that children have bidirectional, or reciprocal, relationships with their environments (Bandura, 1977; Bronfenbrenner, 1979).
To date, it is widely accepted that children’s healthy development is shaped by complex transactional processes among a variety of risk and
protective factors, with cumulative risk factors increasing the prediction of emotional and behavioural problems (Anda et al., 2007; Rutter & Sroufe,
2000; Sameroff, 2000). Risk and protective factors include individual child characteristics such as genetic and constitutional propensities and
cognitive strengths and vulnerabilities; parent characteristics such as mental health, education level, sense of efficacy, and resourcefulness; family
factors such as quality of the parent-child relationship, emotional climate, and marital quality; community connectedness factors such as parental
social support, social resources, and children’s peer relationships; and neighbourhood factors such as availability of resources, adequacy of housing,
and levels of crime and violence (Sameroff & Fiese, 2000). The predictive value of these factors across many studies led to the development
of transactional-bioecological models that attempt to conceptualize the relative contributions of proximal and distal risk and protective factors to
children’s developmental outcome (Bronfenbrenner & Morris, 2006). In 1975, Sameroff and Chandler proposed the transactional model.
This theoretical framework has become central to understanding the interplay between nature and nurture in explaining the development of positive
and negative outcomes for children. The transactional model is a model of qualitative change. Sameroff asserted that the transactional model concerned qualitative rather than incremental change and that the underlying process was dialectical rather mechanistic in nature.
The aim of this chapter is to explore this theoretical framework and its intervention strategies.
In the first part, the transactional model will be described after a brief summary that will illustrate the transition from intrapsychic to transactional
perspective. In the second part, intervention strategies for children and adolescent will be described. The attention of research on environmental risk and
protective factors has fostered a more comprehensive understanding of what is necessary to improve the cognitive and social-emotional welfare of
children and adolescents
Effects of electron-phonon coupling range on the polaron formation
The polaron features due to electron-phonon interactions with different
coupling ranges are investigated by adopting a variational approach. The
ground-state energy, the spectral weight, the average kinetic energy, the mean
number of phonons, and the electron-lattice correlation function are discussed
for the system with coupling to local and nearest neighbor lattice
displacements comparing the results with the long range case. For large values
of the coupling with nearest neighbor sites, most physical quantities show a
strong resemblance with those obtained for the long range electron-phonon
interaction. Moreover, for intermediate values of interaction strength, the
correlation function between electron and nearest neighbor lattice
displacements is characterized by an upturn as function of the electron-phonon
coupling constant.Comment: 5 pages and 4 figure
On the interface polaron formation in organic field-effect transistors
A model describing the low density carrier state in an organic single crystal
FET with high- gate dielectrics is studied. The interplay between
charge carrier coupling with inter-molecular vibrations in the bulk of the
organic material and the long-range interaction induced at the interface with a
polar dielectric is investigated. This interplay is responsible for the
stabilization of a polaronic state with an internal structure extending on few
lattice sites, at much lower coupling strengths than expected from the polar
interaction alone. This effect could give rise to polaron self-trapping in
high- organic FET's without invoking unphysically large values of the
carrier interface interaction.Comment: 9 pages, 9 figure
A variational approach to the optimized phonon technique for electron-phonon problems
An optimized phonon approach for the numerical diagonalization of interacting
electron-phonon systems is proposed. The variational method is based on an
expansion in coherent states that leads to a dramatic truncation in the phonon
space. The reliability of the approach is demonstrated for the extended
Holstein model showing that different types of lattice distortions are present
at intermediate electron-phonon couplings as observed in strongly correlated
systems. The connection with the density matrix renormalization group is
discussed.Comment: 4 figures; submitted to Phys. Rev.
Topological quantum transition driven by charge-phonon coupling in the Haldane Chern insulator
In condensed matter physics many features can be understood in terms of their
topological properties. Here we report evidence of a topological quantum
transition driven by the charge-phonon coupling in the spinless Haldane model
on a honeycomb lattice, a well-known prototypical model of Chern insulator.
Starting from parameters describing the topological phase in the bare Haldane
model, we show that the increasing of the strength of the charge lattice
coupling drives the system towards a trivial insulator. The average number of
fermions in the Dirac point, characterized by the lowest gap, exhibits a finite
discontinuity at the transition point and can be used as direct indicator of
the topological quantum transition. Numerical simulations show, also, that the
renormalized phonon propagator exhibits a two peak structure across the quantum
transition, whereas, in absence of the mass term in the bare Hadane model,
there is indication of a complete softening of the effective vibrational mode
signaling a charge density wave instability.Comment: 5 pages, 4 figure
Applications of Self-Organizing Maps for Ecomorphological Investigations through Early Ontogeny of Fish
We propose a new graphical approach to the analysis of multi-temporal morphological and ecological data concerning the life history of fish, which can typically serves models in ecomorphological investigations because they often undergo significant ontogenetic changes. These changes can be very complex and difficult to describe, so that visualization, abstraction and interpretation of the underlying relationships are often impeded. Therefore, classic ecomorphological analyses of covariation between morphology and ecology, performed by means of multivariate techniques, may result in non-exhaustive models. The Self Organizing map (SOM) is a new, effective approach for pursuing this aim. In this paper, lateral outlines of larval stages of gilthead sea bream (Sparus aurata) and dusky grouper (Epinephelus marginatus) were recorded and broken down using by means of Elliptic Fourier Analysis (EFA). Gut contents of the same specimens were also collected and analyzed. Then, shape and trophic habits data were examined by SOM, which allows both a powerful visualization of shape changes and an easy comparison with trophic habit data, via their superimposition onto the trained SOM. Thus, the SOM provides a direct visual approach for matching morphological and ecological changes during fish ontogenesis. This method could be used as a tool to extract and investigate relationships between shape and other sinecological or environmental variables, which cannot be taken into account simultaneously using conventional statistical methods
Effect of weak disorder in the Fully Frustrated XY model
The critical behaviour of the Fully Frustrated XY model in presence of weak
positional disorder is studied in a square lattice by Monte Carlo methods. The
critical exponent associated to the divergence of the chiral correlation length
is found to be equal to 1.7 already at very small values of disorder.
Furthermore the helicity modulus jump is found larger than the universal value
expected in the XY model.Comment: 8 pages, 4 figures (revtex
Non-local composite spin-lattice polarons in high temperature superconductors
The non-local nature of the polaron formation in t-t'-t"-J model is studied
in large lattices up to 64 sites by developing a new numerical method. We show
that the effect of longer-range hoppings t' and t" is a large anisotropy of the
electron-phonon interaction (EPI) leading to a completely different influence
of EPI on the nodal and antinodal points in agreement with the experiments.
Furthermore, nonlocal EPI preserves polaron's quantum motion, which destroys
the antiferromagnetic order effectively, even at strong coupling regime,
although the quasi-particle weight in angle-resolved-photoemission spectroscopy
is strongly suppressed.Comment: 5 pages, 4 figure
Two channel model for optical conductivity of high mobility organic crystals
We show that the temperature dependence of conductivity of high mobility
organic crystals Pentacene and Rubrene can be quantitatively described in the
framework of the model where carriers are scattered by quenched local
impurities and interact with phonons by Su-Schrieffer-Hegger (SSH) coupling.
Within this model, we present approximation free results for mobility and
optical conductivity obtained by world line Monte Carlo, which we generalize to
the case of coupling both to phonons and impurities. We find fingerprints of
carrier dynamics in these compounds which differ from conventional metals and
show that the dynamics of carriers can be described as a superposition of a
Drude term representing diffusive mobile particles and a Lorentz term
associated with dynamics of localized charges.Comment: 6 pages, 5 figure
- …
