619 research outputs found
Revising conflicting intention sets in BDI agents
Autonomous agents typically have several goals they are pursuing simultaneously. Even if the goals themselves are not necessarily inconsistent, choices made about how to pursue each of these goals may well result in a set of intentions which are conflicting. A rational autonomous agent should be able to reason about and modify its set of intentions to take account of such issues. This paper presents the semantics of some preferences regarding modified sets of intentions. We look at the possibility of simply deleting some intention(s) but more importantly we also look at the possibility of modifying intentions, such that the goals will still be achieved but in a different way
Effects of state dependent correlations on nucleon density and momentum distributions
The proton momentum and density distributions of closed shell nuclei are
calculated within a model treating short--range correlations up to first order
in the cluster expansion. The validity of the model is verified by comparing
the results obtained with purely scalar correlations with those produced by
finite nuclei Fermi Hypernetted Chain calculations. State dependent
correlations are used to calculate momentum and density distributions of 12C,
16O, 40Ca, and 48Ca, and the effects of their tensor components are studied.Comment: 16 pages, latex, 8 figures, accepted for publication in Phys. Rev.
Spectroscopic Factors in Ca and Pb from : Fully Relativistic Analysis
We present results for spectroscopic factors of the outermost shells in
Ca and Pb, which have been derived from the comparison between
the available quasielastic () data from NIKHEF-K and the corresponding
calculated cross-sections obtained within a fully relativistic formalism. We
include exactly the effect of Coulomb distortion on the electron wave functions
and discuss its role in the extraction of the spectroscopic factors from
experiment. Without any adjustable parameter, we find spectroscopic factors of
about 70\%, consistent with theoretical predictions. We compare our results
with previous relativistic and nonrelativistic analyses of () data. In
addition to Coulomb distortion effects we discuss different choices of the
nucleon current operator and also analyze the effects due to the relativistic
treatment of the outgoing-distorted and bound nucleon wave functions.Comment: 9 pages RevTeX, 5 figures can be obtained from the author
Missing and Quenched Gamow Teller Strength
Gamow-Teller strength functions in full spaces are calculated with
sufficient accuracy to ensure that all the states in the resonance region have
been populated. Many of the resulting peaks are weak enough to become
unobservable. The quenching factor necessary to bring into agreement the low
lying observed states with shell model predictions is shown to be due to
nuclear correlations. To within experimental uncertainties it is the same that
is found in one particle transfer and (e,e') reactions. Perfect consistency
between the observed peaks and the calculation is
achieved by assuming an observation threshold of 0.75\% of the total strength,
a value that seems typical in several experimentsComment: 11 pages, 6 figures avalaible upon request, RevTeX, FTUAM-94/0
Short-range correlations in low-lying nuclear excited states
The electromagnetic transitions to various low-lying excited states of 16O,
48Ca and 208Pb are calculated within a model which considers the short-range
correlations. In general the effects of the correlations are small and do not
explain the required quenching to describe the data.Comment: 6 pages, 2 postscript figures, 1 tabl
One Body Density Matrix, Natural Orbits and Quasi Hole States in 16O and 40Ca
The one body density matrix, momentum distribution, natural orbits and quasi
hole states of 16O and 40Ca are analyzed in the framework of the correlated
basis function theory using state dependent correlations with central and
tensor components. Fermi hypernetted chain integral equations and single
operator chain approximation are employed to sum cluster diagrams at all
orders. The optimal trial wave function is determined by means of the
variational principle and the realistic Argonne v8' two-nucleon and Urbana IX
three-nucleon interactions. The correlated momentum distributions are in good
agreement with the available variational Monte Carlo results and show the well
known enhancement at large momentum values with respect to the independent
particle model. Diagonalization of the density matrix provides the natural
orbits and their occupation numbers. Correlations deplete the occupation number
of the first natural orbitals by more than 10%. The first following ones result
instead occupied by a few percent. Jastrow correlations lower the spectroscopic
factors of the valence states by a few percent (~1-3%) and an additional ~8-12%
depletion is provided by tensor correlations. It is confirmed that short range
correlations do not explain the spectroscopic factors extracted from (e,e'p)
experiments. 2h-1p perturbative corrections in the correlated basis are
expected to provide most of the remaining strength, as in nuclear matter.Comment: 25 pages, 9 figures. Submitted to Phys.Rev.
Determination of Matter Surface Distribution of Neutron-rich Nuclei
We demonstrate that the matter density distribution in the surface region is
determined well by the use of the relatively low-intensity beams that become
available at the upcoming radioactive beam facilities. Following the method
used in the analyses of electron scattering, we examine how well the density
distribution is determined in a model-independent way by generating pseudo data
and by carefully applying statistical and systematic error analyses. We also
study how the determination becomes deteriorated in the central region of the
density, as the quality of data decreases. Determination of the density
distributions of neutron-rich nuclei is performed by fixing parameters in the
basis functions to the neighboring stable nuclei. The procedure allows that the
knowledge of the density distributions of stable nuclei assists to strengthen
the determination of their unstable isotopes.Comment: 41 pages, latex, 27 figure
Recent progress towards a physics-based understanding of the H-mode transition
Results from recent experiment and numerical simulation point towards a picture of the L-H transition in which edge shear flows interacting with edge turbulence create the conditions needed to produce a non-zero turbulent Reynolds stress at and just inside the LCFS during L-mode discharges. This stress acts to reinforce the shear flow at this location and the flow drive gets stronger as heating is increased. The L-H transition ensues when the rate of work done by this stress is strong enough to drive the shear flow to large values, which then grows at the expense of the turbulence intensity. The drop in turbulence intensity momentarily reduces the heat flux across the magnetic flux surface, which then allows the edge plasma pressure gradient to build. A sufficiently strong ion pressure gradient then locks in the H-mode state. These results are in general agreement with previously published reduced 0D and 1D predator prey models. An extended predator-prey model including separate ion and electron heat channels yields a non-monotonic power threshold dependence on plasma density provided that the fraction of heat deposited on the ions increases with plasma density. Possible mechanisms to explain other macroscopic transition threshold criteria are identified. A number of open questions and unexplained observations are identified, and must be addressed and resolved in order to build a physics-based model that can yield predictions of the macroscopic conditions needed for accessing H-mode
Use of motion tracking in stereotactic body radiotherapy: Evaluation of uncertainty in off-target dose distribution and optimization strategies
n/
- …
