438 research outputs found

    Surface salinity of the North Atlantic : can we reconstruct its fluctuations over the last one hundred years ?

    Get PDF
    Surface samples have been collected in the North Atlantic in the past one hundred years for determining the ocean salinity and its temperature. A large share of the data we have used were collected by merchant vessels of weather ships of European countries and to a large extent are listed in reports, in particular in the "Bulletin Hydrographique". We investigate whether these data are relevant for determining low frequency fluctuations of the sea surface salinity. We find many crossing in the 1920s for which salinity is anomalously high compared with the climatology or with other crossings collected on the same ship line. These anomalies are indicative of a contamination of the sample. By examining hydrographic data, reports and recent experience in collectionand storage in sea water, we can attribute these large errors to unclean buckets where salt crystals dissolve into the sample and to breathing of the samples during the storage. Each of these stages contributes in estimating a too large salinity and adds to the scatter of the measurements. (D'après résumé d'auteur

    Duration and severity of Medieval drought in the Lake Tahoe Basin

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Quaternary Science Reviews 30 (2011): 3269-3279, doi:10.1016/j.quascirev.2011.08.015.Droughts in the western U.S. in the past 200 years are small compared to several megadroughts that occurred during Medieval times. We reconstruct duration and magnitude of extreme droughts in the northern Sierra Nevada from hydroclimatic conditions in Fallen Leaf Lake, California. Stands of submerged trees rooted in situ below the lake surface were imaged with sidescan sonar and radiocarbon analysis yields an age estimate of ∼1250 AD. Tree-ring records and submerged paleoshoreline geomorphology suggest a Medieval low-stand of Fallen Leaf Lake lasted more than 220 years. Over eighty more trees were found lying on the lake floor at various elevations above the paleoshoreline. Water-balance calculations suggest annual precipitation was less than 60% normal from late 10th century to early 13th century AD. Hence, the lake’s shoreline dropped 40–60 m below its modern elevation. Stands of pre-Medieval trees in this lake and in Lake Tahoe suggest the region experienced severe drought at least every 650–1150 years during the mid- and late-Holocene. These observations quantify paleo-precipitation and recurrence of prolonged drought in the northern Sierra Nevada.Support for this work was provided by US Geological Survey/ Desert Research Institute under Project ID# 2003NV39B, a Geological Society of America graduate research grant and the IRIS undergraduate internship program. F. Biondiwas supported, in part by NSF Cooperative Agreement EPS-0814372 to the Nevada System of Higher Education. N. Driscoll was supported in part by a grant from CA DWR

    Changes in the Seasonality of Precipitation over the Contiguous USA

    Get PDF
    Consequences of possible changes in annual total precipitation are dictated, in part, by the timing of precipitation events and changes therein. Herein, we investigated historical changes in precipitation seasonality over the US using observed station precipitation records to compute a standard seasonality index (SI) and the day of year on which certain percentiles of the annual total precipitation were achieved (percentile day of year). The mean SI from the majority of stations exhibited no difference in 1971–2000 relative to 30-year periods earlier in the century. However, analysis of the day of year on which certain percentiles of annual total precipitation were achieved indicated spatially coherent patterns of change. In some regions, the mean day of the year on which the 50th percentile of annual precipitation was achieved differed by 20–30 days between 1971–2000 and both 1911–1940 and 1941–1970. Output from the 10-Atmosphere-Ocean General Circulation Models (AOGCM) simulations of 1971–2000, 2046–2065, and 2081–2100 was used to determine whether AOGCMs are capable of representing the seasonal distribution of precipitation and to examine possible future changes. Many of the AOGCMs qualitatively captured spatial patterns of seasonality during 1971–2000, but there was considerable divergence between AOGCMs in terms of future changes. In both the west and southeast, 7 of 10 AOGCMs indicated later attainment of the 50th percentile accumulation in 2047–2065, implying a possible reversal of the twentieth-century tendency toward relative increases in precipitation receipt during winter and early spring over the southeast. However, this is also a region characterized by considerable interannual variability in the percentile day of year during the historical period

    Effect of anthropogenic sulphate aerosol in China on the drought in the western-to-central US

    Get PDF
    In recent decades, droughts have occurred in the western-to-central United States (US), significantly affecting food production, water supplies, ecosystem health, and the propagation of vector-borne diseases. Previous studies have suggested natural sea surface temperature (SST) forcing in the Pacific as the main driver of precipitation deficits in the US. Here, we show that the aerosol forcing in China, which has been known to alter the regional hydrological cycle in East Asia, may also contribute to reducing the precipitation in the western-to-central US through atmospheric teleconnections across the Pacific. Our model experiments show some indications that both the SST forcing and the increase in regional sulphate forcing in China play a similar role in modulating the western-to-central US precipitation, especially its long-term variation. This result indicates that regional air quality regulations in China have important implications for hydrological cycles in East Asia, as well as in the USopen1

    Do We Need to Clamp the Renal Hilum Liberally during the Initial Phase of the Learning Curve of Robot-Assisted Nephron-Sparing Surgery?

    Get PDF
    Objective. We aimed to compare the results of our initial robot-assisted nephron-sparing surgeries (RANSS) performed with or without hilar clamping. Material and Method. Charts of the initial RANSSs ( = 44), which were performed by a single surgeon, were retrospectively reviewed. R.E.N.A.L. nephrometry system, modified Clavien classification, and M.D.R.D. equation were used to record tumoral complexity, complications, and estimated glomerular filtration rate (eGFR), respectively. Outcomes of the clamped (group 1, = 14) versus off-clamp (group 2, = 30) RANSSs were compared. Results. The difference between the two groups was insignificant regarding mean patient age, mean tumor size, and mean R.E.N.A.L. nephrometry score. Mean operative time, mean estimated blood loss amount, and mean length of hospitalization were similar between groups. A total of 4 patients in each group suffered 11 Clavien grade ≥2 complications early postoperatively. Open conversion rates were similar. The difference between the 2 groups in terms of the mean postoperative change in eGFR was insignificant. We did not encounter any local recurrence after a mean follow-up of 18.9 months. Conclusions. Creating warm-ischemic conditions during RANSS should not be a liberal decision, even in the initial phases of the learning curve for a highly experienced open surgeon

    Emissions pathways, climate change, and impacts on California

    Get PDF
    The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpine subalpine forests are reduced by 50–75%; and Sierra snowpack is reduced 30–70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpine subalpine forests are reduced by 75–90%; and snowpack declines 73–90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California’s water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades

    Management of hydrocele in adolescent patients

    Get PDF
    Hydrocele is defined as an abnormal collection of serous fluid in the potential space between the parietal and visceral layers of the tunica vaginalis. In the majority of affected adolescents, hydrocele is acquired and is idiopathic in origin. The pathogenesis of idiopathic hydrocele is thought to be an imbalance in the normal process of fluid production and reabsorption. The diagnosis is usually clinical. Taking a thorough history is essential to rule out any fluctuation in size, which is an indication of a patent processus vaginalis. Scrotal ultrasonography is mandatory in nonpalpable testicles to rule out a subtending testicular solid mass requiring inguinal exploration. Otherwise, open hydrocelectomy via a scrotal incision is the standard treatment of idiopathic hydroceles. The second most common cause of hydrocele in adolescents is varicocelectomy. The risk of hydrocele formation is higher with non-artery-sparing procedures or those performed without microsurgical aid, and in surgery requiring cord dissection. If hydrocele occurs after varicocelectomy, initial management should include observation with or without hydrocele aspiration. Large persistent hydroceles are best served by open hydrocelectomy

    Comparative assessment of gasification based coal power plants with various CO2 capture technologies producing electricity and hydrogen

    Get PDF
    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency
    corecore