1,555 research outputs found

    The phase diagram of QCD with four degenerate quarks

    Full text link
    We revisit the determination of the pseudo-critical line of QCD with four degenerate quarks at non-zero temperature and baryon density by the method of analytic continuation. We determine the pseudo-critical couplings at imaginary chemical potentials by high-statistics Monte Carlo simulations and reveal deviations from the simple quadratic dependence on the chemical potential visible in earlier works on the same subject. Finally, we discuss the implications of our findings for the shape of the pseudo-critical line at real chemical potential, comparing different possible extrapolations.Comment: 8 pages, 8 figures, 2 table

    Flux tubes in the SU(3) vacuum

    Full text link
    We analyze the distribution of the chromoelectric field generated by a static quark-antiquark pair in the SU(3) vacuum. We find that the transverse profile of the flux tube resembles the dual version of the Abrikosov vortex field distribution and give an estimate of the London penetration length in the confined vacuum.Comment: 7 pages, 3 figures, poster contribution to the XXIX International Symposium on Lattice Field Theory, LATTICE 201

    Magnetic Instability in a Parity Invariant 2D Fermion System

    Get PDF
    We consider the parity invariant (2+1)-dimensional QED where the matter is represented as a mixture of fermions with opposite spins. It is argued that the perturbative ground state of the system is unstable with respect to the formation of magnetized ground state. Carrying out the finite temperature analysis we show that the magnetic instability disappears in the high temperature regime.Comment: 7 pages, RevTe

    The deconfining phase transition in full QCD with two dynamical flavors

    Full text link
    We investigate the deconfining phase transition in SU(3) pure gauge theory and in full QCD with two flavors of staggered fermions. The phase transition is detected by measuring the free energy in presence of an abelian monopole background field. In the pure gauge case our finite size scaling analysis is in agreement with the well known presence of a weak first order phase transition. In the case of 2 flavors full QCD we find, using the standard pure gauge and staggered fermion actions, that the phase transition is consistent with weak first order, contrary to the expectation of a crossover for not too large quark masses and in agreement with results obtained by the Pisa group.Comment: 23 pages, 11 figures, 4 tables (minor typos corrected, references updated, accepted for publication on JHEP

    Unstable Modes in Three-Dimensional SU(2) Gauge Theory

    Full text link
    We investigate SU(2) gauge theory in a constant chromomagnetic field in three dimensions both in the continuum and on the lattice. Using a variational method to stabilize the unstable modes, we evaluate the vacuum energy density in the one-loop approximation. We compare our theoretical results with the outcomes of the numerical simulations.Comment: 24 pages, REVTEX 3.0, 3 Postscript figures included. (the whole postscript file (text+figures) is available on request from [email protected]

    Long range chromomagnetic fields at high temperature

    Full text link
    The magnetic mass of neutral gluons in Abelian chromomagnetic field at high temperature is calculated in SU(2)$ gluodynamics. It is noted that such type fields are spontaneously generated at high temperature. The mass is computed either from the Schwinger-Dyson equation accounting for the one-loop polarization tensor or in Monte-Carlo simulations on a lattice. In latter case, an average magnetic flux penetrating a plaquette is measured for a number of lattices. Both calculations are in agreement with each other and result in zero magnetic mass. Some applications of the results obtained are discussed.Comment: 14 pages, 1 figur

    A gauge invariant study of the monopole condensation in non Abelian lattice gauge theories

    Get PDF
    We investigate the Abelian monopole condensation in finite temperature SU(2) and SU(3) pure lattice gauge theories. To this end we introduce a gauge invariant disorder parameter built up in terms of the lattice Schr\"odinger functional. Our numerical results show that the disorder parameter is different from zero and Abelian monopole condense in the confined phase. On the other hand our numerical data suggest that the disorder parameter tends to zero, in the thermodynamic limit, when the gauge coupling constant approaches the critical deconfinement value. In the case of SU(3) we also compare the different kinds of Abelian monopoles which can be defined according to the choice of the Abelian subgroups.Comment: 18 pages, 7 figures, LaTe

    How to get from imaginary to real chemical potential

    Get PDF
    Using the exactly solvable Gross-Neveu model as theoretical laboratory, we analyse in detail the relationship between a relativistic quantum field theory at real and imaginary chemical potential. We find that one can retrieve the full information about the phase diagram of the theory from an imaginary chemical potential calculation. The prerequisite is to evaluate and analytically continue the effective potential for the chiral order parameter, rather than thermodynamic observables or phase boundaries. In the case of an inhomogeneous phase, one needs to compute the full effective action, a functional of the space-dependent order parameter, at imaginary chemical potential.Comment: revtex, 9 pages, 10 figures; v2: add more references, modify concluding sectio

    Testing the Isotropy of the Universe with Type Ia Supernovae

    Full text link
    We analyze the magnitude-redshift data of type Ia supernovae included in the Union and Union2 compilations in the framework of an anisotropic Bianchi type I cosmological model and in the presence of a dark energy fluid with anisotropic equation of state. We find that the amount of deviation from isotropy of the equation of state of dark energy, the skewness \delta, and the present level of anisotropy of the large-scale geometry of the Universe, the actual shear \Sigma_0, are constrained in the ranges -0.16 < \delta < 0.12 and -0.012 < \Sigma_0 < 0.012 (1\sigma C.L.) by Union2 data. Supernova data are then compatible with a standard isotropic universe (\delta = \Sigma_0 = 0), but a large level of anisotropy, both in the geometry of the Universe and in the equation of state of dark energy, is allowed.Comment: 12 pages, 7 figures, 2 tables. Union2 analysis added. New references added. To appear in Phys. Rev.

    Lattice QCD Simulations in External Background Fields

    Full text link
    We discuss recent results and future prospects regarding the investigation, by lattice simulations, of the non-perturbative properties of QCD and of its phase diagram in presence of magnetic or chromomagnetic background fields. After a brief introduction to the formulation of lattice QCD in presence of external fields, we focus on studies regarding the effects of external fields on chiral symmetry breaking, on its restoration at finite temperature and on deconfinement. We conclude with a few comments regarding the effects of electromagnetic background fields on gluodynamics.Comment: 31 pages, 10 figures, minor changes and references added. To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye
    corecore