9 research outputs found
Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7.
ProTx-II is a disulfide-rich peptide toxin from tarantula venom able to inhibit the human voltage-gated sodium channel 1.7 (hNaV1.7), a channel reported to be involved in nociception, and thus it might have potential as a pain therapeutic. ProTx-II acts by binding to the membrane-embedded voltage sensor domain of hNaV1.7, but the precise peptide channel-binding site and the importance of membrane binding on the inhibitory activity of ProTx-II remain unknown. In this study, we examined the structure and membrane-binding properties of ProTx-II and several analogues using NMR spectroscopy, surface plasmon resonance, fluorescence spectroscopy, and molecular dynamics simulations. Our results show a direct correlation between ProTx-II membrane binding affinity and its potency as an hNaV1.7 channel inhibitor. The data support a model whereby a hydrophobic patch on the ProTx-II surface anchors the molecule at the cell surface in a position that optimizes interaction of the peptide with the binding site on the voltage sensor domain. This is the first study to demonstrate that binding of ProTx-II to the lipid membrane is directly linked to its potency as an hNaV1.7 channel inhibitor
Protein interactions of FAM134B with EB1 and APC/beta‐catenin in vitro in colon carcinoma
FAM134B is an autophagy regulator of endoplasmic reticulum and acts as a cancer suppressor in colon cancer. However, the molecular signaling pathways by which FAM134B interacts within colon carcinogenesis is still unknown. Herein, this study aims to determine the interacting partners of FAM134B for the first time in colon cancer and to explore the precise location of FAM134B in cancer signalling pathways. Liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) followed by anti‐FAM134B co‐immune precipitation of FAM134B interacting complex was used to identify the potential interactors of FAM134B in colon cancer cells. Western blot and confocal microscopic analysis were used to validate the physical interactions of FAM134B with the interactors. Lentiviral shRNA mediated silencing of FAM134B was used to examine the modulation of FAM134B interactors in cells. We have identified 29 novel binding partners, including CAP1, RPS28, FTH1, KDELR2, MAP4, EB1, PSMD6, PPIB/CYPB etc. Subsequent immunoassays confirmed the direct physical interactions of FAM134B with CAP1, EB1, CYPB, and KDELR2 in colon cancer cells. Exogenous suppression of FAM134B has led to significant upregulation of EB1 as well as reduction of KDELR2 expression. It was noted that overexpression of EB1 promotes WNT/β‐catenin signaling pathways via inactivating tumor suppressor APC followed by activating β‐catenin in colorectal carcinogenesis. This study has first time reported the gene signaling networks with which FAM134B interacts and noted that FAM134B is involved in the regulation of WNT/β‐catenin pathway by EB1‐mediated modulating of APC in colon cancer cells.Griffith Health, School of MedicineNo Full Tex
Field-scale monitoring of green sea turtles (Chelonia mydas): Influence of site characteristics and capture technique on the blood metabolome
Given their threatened status, there is considerable interest in establishing monitoring techniques that can be used to evaluate the health of sea turtles in the wild. The present study represents a methodological contribution towards field-scale metabolomic assessment of sea turtles, by exploring differences in blood biochemistry associated with site characteristics and capture technique. We compared the metabolome of blood from animals at three locations (two coastal and one reefal), collected from turtles that were either resting or active, and sampled across multiple seasons at one location. Our results show clear differences in the metabolome of turtles from the three locations, some of which are likely attributable to differences in diet or forage quality and others which may reflect differences in other factors (e.g., occurrence of land-based contaminants or other biotic and/or abiotic stressors) between coastal and reefal sites. Our analysis also revealed the influence of capture technique on metabolite profiles, with numerous markers of physical exertion in animals captured while active that were absent in turtles sampled while resting. We observed a modest potential for temporal differences in the metabolome, but controlling for sampling time did not change the overall conclusions of our study. This suggests that temporal differences in the metabolome warrant consideration when designing studies to evaluate the status of sea turtles in the wild, but that site characteristics and capture technique are bigger drivers. However, sample size for this comparison was relatively small and further investigation of seasonal differences in the metabolome are warranted. Research exploring each of these factors more closely will further contribute towards achieving robust metabolomics analysis of sea turtles across large spatial and temporal scales.No Full Tex
Rational design and synthesis of orally bioavailable peptides guided by NMR amide temperature coefficients
Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog
Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties
Gomesin, a disulfide-rich antimicrobial peptide produced by the Brazilian spider Acanthoscurria gomesiana, has been shown to be potent against Gram-negative bacteria and to possess selective anticancer properties against melanoma cells. In a recent study, a backbone cyclized analogue of gomesin was shown to be as active but more stable than its native form. In the current study, we were interested in improving the antimicrobial properties of the cyclic gomesin, understanding its selectivity toward melanoma cells and elucidating its antimicrobial and anticancer mode of action. Rationally designed analogues of cyclic gomesin were examined for their antimicrobial potency, selectivity toward cancer cells, membrane-binding affinity, and ability to disrupt cell and model membranes. We improved the activity of cyclic gomesin by 10-fold against tested Gram-negative and Gram-positive bacteria without increasing toxicity to human red blood cells. In addition, we showed that gomesin and its analogues are more toxic toward melanoma and leukemia cells than toward red blood cells and act by selectively targeting and disrupting cancer cell membranes. Preference toward some cancer types is likely dependent on their different cell membrane properties. Our findings highlight the potential of peptides as antimicrobial and anticancer leads and the importance of selectively targeting cancer cell membranes for drug development
Cyclic penta- and hexaleucine peptides without N-methylation are orally absorbed
Development of peptide-based drugs has been severely limited by lack of oral bioavailability with less than a handful of peptides being truly orally bioavailable, mainly cyclic peptides with N-methyl amino acids and few hydrogen bond donors. Here we report that cyclic penta- and hexaleucine peptides, with no N-methylation and five or six amide NH protons, exhibit some degree of oral bioavailability (4-17%) approaching that of the heavily N-methylated drug cyclosporine (22%) under the same conditions. These simple cyclic peptides demonstrate that oral bioavailability is achievable for peptides that fall outside of rule-of-five guidelines without the need for N-methylation or modified amino acids
Cyclic Penta- and Hexaleucine Peptides without <i>N</i>‑Methylation Are Orally Absorbed
Development of peptide-based drugs
has been severely limited by
lack of oral bioavailability with less than a handful of peptides
being truly orally bioavailable, mainly cyclic peptides with <i>N</i>-methyl amino acids and few hydrogen bond donors. Here
we report that cyclic penta- and hexa-leucine peptides, with no <i>N</i>-methylation and five or six amide NH protons, exhibit
some degree of oral bioavailability (4–17%) approaching that
of the heavily <i>N</i>-methylated drug cyclosporine (22%)
under the same conditions. These simple cyclic peptides demonstrate
that oral bioavailability is achievable for peptides that fall outside
of rule-of-five guidelines without the need for <i>N</i>-methylation or modified amino acids
