3,956 research outputs found
Incidence and costs of unintentional falls in older people in the United Kingdom
STUDY OBJECTIVE: To estimate the number of accident and emergency (A&E) attendances, admissions to hospital, and the associated costs as a result of unintentional falls in older people. DESIGN: Analysis of national databases for cost of illness. SETTING: United Kingdom, 1999, cost to the National Health Service (NHS) and Personal Social Services (PSS). PARTICIPANTS: Four age groups of people 60 years and over (60–64, 65–69, 70–74, and 75) attending an A&E department or admitted to hospital after an unintentional fall. Databases analysed were the Home Accident Surveillance System (HASS) and Leisure Accident Surveillance System (LASS), and Hospital Episode Statistics (HES). MAIN RESULTS: There were 647 721 A&E attendances and 204 424 admissions to hospital for fall related injuries in people aged 60 years and over. For the four age groups A&E attendance rates per 10 000 population were 273.5, 287.3, 367.9, and 945.3, and hospital admission rates per 10 000 population were 34.5, 52.0, 91.9, and 368.6. The cost per 10 000 population was £300 000 in the 60–64 age group, increasing to £1 500 000 in the 75 age group. These falls cost the UK government £981 million, of which the NHS incurred 59.2%. Most of the costs (66%) were attributable to falls in those aged 75 years. The major cost driver was inpatient admissions, accounting for 49.4% of total cost of falls. Long term care costs were the second highest, accounting for 41%, primarily in those aged 75 years. CONCLUSIONS: Unintentional falls impose a substantial burden on health and social services
Asteroseismology of red giants: photometric observations of Arcturus by SMEI
We present new results on oscillations of the K1.5 III giant Arcturus (alpha
Boo), from analysis of just over 2.5 yr of precise photometric observations
made by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite.
A strong mode of oscillation is uncovered by the analysis, having frequency
3.51+/-0.03 micro-Hertz. By fitting its mode peak, we are able offer a highly
constrained direct estimate of the damping time (tau = 24+/-1 days). The data
also hint at the possible presence of several radial-mode overtones, and maybe
some non-radial modes. We are also able to measure the properties of the
granulation on the star, with the characteristic timescale for the granulation
estimated to be 0.50+/-0.05 days.Comment: 6 pages, 5 figures; accepted for publication in MNRAS Letter
A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies
The frequencies of the solar acoustic oscillations vary over the activity
cycle. The variations in other activity proxies are found to be well correlated
with the variations in the acoustic frequencies. However, each proxy has a
slightly different time behaviour. Our goal is to characterize the differences
between the time behaviour of the frequency shifts and of two other activity
proxies, namely, the area covered by sunspots and the 10.7cm flux. We define a
new observable that is particularly sensitive to the short-term frequency
variations. We then compare the observable when computed from model frequency
shifts and from observed frequency shifts obtained with the Global Oscillation
Network Group (GONG) for cycle 23. Our analysis shows that on the shortest
time-scales the variations in the frequency shifts seen in the GONG
observations are strongly correlated with the variations in the area covered by
sunspots. However, a significant loss of correlation is still found. We verify
that the times when the frequency shifts and the sunspot area do not vary in a
similar way tend to coincide with the times of the maxima of the quasi-biennial
variations seen in the solar seismic data. A similar analysis of the relation
between the 10.7cm flux and the frequency shifts reveals that the short-time
variations in the frequency shifts follow even more closely those of the 10.7cm
flux than those of the sunspot area. However, a loss of correlation between
frequency shifts and 10.7cm flux variations is still found around the same
times.Comment: 7 pages, 6 figures, accepted for publication in MNRA
The Octave (Birmingham - Sheffield Hallam) automated pipeline for extracting oscillation parameters of solar-like main-sequence stars
The number of main-sequence stars for which we can observe solar-like
oscillations is expected to increase considerably with the short-cadence
high-precision photometric observations from the NASA Kepler satellite. Because
of this increase in number of stars, automated tools are needed to analyse
these data in a reasonable amount of time. In the framework of the asteroFLAG
consortium, we present an automated pipeline which extracts frequencies and
other parameters of solar-like oscillations in main-sequence and subgiant
stars. The pipeline uses only the timeseries data as input and does not require
any other input information. Tests on 353 artificial stars reveal that we can
obtain accurate frequencies and oscillation parameters for about three quarters
of the stars. We conclude that our methods are well suited for the analysis of
main-sequence stars, which show mainly p-mode oscillations.Comment: accepted by MNRA
Tests of the asymptotic large frequency separation of acoustic oscillations in solar-type and red giant stars
Asteroseismology, i.e. the study of the internal structures of stars via
their global oscillations, is a valuable tool to obtain stellar parameters such
as mass, radius, surface gravity and mean density. These parameters can be
obtained using certain scaling relations which are based on an asymptotic
approximation. Usually the observed oscillation parameters are assumed to
follow these scaling relations. Recently, it has been questioned whether this
is a valid approach, i.e., whether the order of the observed oscillation modes
are high enough to be approximated with an asymptotic theory. In this work we
use stellar models to investigate whether the differences between observable
oscillation parameters and their asymptotic estimates are indeed significant.
We compute the asymptotic values directly from the stellar models and derive
the observable values from adiabatic pulsation calculations of the same models.
We find that the extent to which the atmosphere is included in the models is a
key parameter. Considering a larger extension of the atmosphere beyond the
photosphere reduces the difference between the asymptotic and observable values
of the large frequency separation. Therefore, we conclude that the currently
suggested discrepancies in the scaling relations might have been overestimated.
Hence, based on the results presented here we believe that the suggestions of
Mosser et al. (2013) should not be followed without careful consideration.Comment: 6 pages, 4 figures, 1 table, accepted for publication by MNRAS as a
Letter to the Edito
Analysis of the solar cycle and core rotation using 15 years of Mark-I observations:1984-1999. I. The solar cycle
High quality observations of the low-degree acoustic modes (p-modes) exist
for almost two complete solar cycles using the solar spectrophotometer Mark-I,
located at the Observatorio del Teide (Tenerife, Spain) and operating now as
part of the Birmingham Solar Oscillations Network (BiSON). We have performed a
Fourier analysis of 30 calibrated time-series of one year duration covering a
total period of 15 years between 1984 and 1999. Applying different techniques
to the resulting power spectra, we study the signature of the solar activity
changes on the low-degree p-modes. We show that the variation of the central
frequencies and the total velocity power (TVP) changes. A new method of
simultaneous fit is developed and a special effort has been made to study the
frequency-dependence of the frequency shift. The results confirm a variation of
the central frequencies of acoustic modes of about 450 nHz, peak-to-peak, on
average for low degree modes between 2.5 and 3.7 mHz. The TVP is
anti-correlated with the common activity indices with a decrease of about 20%
between the minimum and the maximum of solar cycle 22. The results are compared
with those obtained for intermediate degrees, using the LOWL data. The
frequency shift is found to increase with the degree with a weak l-dependence
similar to that of the inverse mode mass. This verifies earlier suggestions
that near surface effects are predominant.Comment: Accepted by A&A October 3 200
Asteroseismic surface gravity for evolved stars
Context: Asteroseismic surface gravity values can be of importance in
determining spectroscopic stellar parameters. The independent log(g) value from
asteroseismology can be used as a fixed value in the spectroscopic analysis to
reduce uncertainties due to the fact that log(g) and effective temperature can
not be determined independently from spectra. Since 2012, a combined analysis
of seismically and spectroscopically derived stellar properties is ongoing for
a large survey with SDSS/APOGEE and Kepler. Therefore, knowledge of any
potential biases and uncertainties in asteroseismic log(g) values is now
becoming important. Aims: The seismic parameter needed to derive log(g) is the
frequency of maximum oscillation power (nu_max). Here, we investigate the
influence of nu_max derived with different methods on the derived log(g)
values. The large frequency separation between modes of the same degree and
consecutive radial orders (Dnu) is often used as an additional constraint for
the determination of log(g). Additionally, we checked the influence of small
corrections applied to Dnu on the derived values of log(g). Methods We use
methods extensively described in the literature to determine nu_max and Dnu
together with seismic scaling relations and grid-based modeling to derive
log(g). Results: We find that different approaches to derive oscillation
parameters give results for log(g) with small, but different, biases for
red-clump and red-giant-branch stars. These biases are well within the quoted
uncertainties of ~0.01 dex (cgs). Corrections suggested in the literature to
the Dnu scaling relation have no significant effect on log(g). However somewhat
unexpectedly, method specific solar reference values induce biases of the order
of the uncertainties, which is not the case when canonical solar reference
values are used.Comment: 8 pages, 5 figures, accepted for publication by A&
Changes in the sensitivity of solar p-mode frequency shifts to activity over three solar cycles
Low-degree solar p-mode observations from the long-lived Birmingham Solar
Oscillations Network (BiSON) stretch back further than any other single
helioseismic data set. Results from BiSON have suggested that the response of
the mode frequency to solar activity levels may be different in different
cycles. In order to check whether such changes can also be seen at higher
degrees, we compare the response of medium-degree solar p-modes to activity
levels across three solar cycles using data from Big Bear Solar Observatory
(BBSO), Global Oscillation Network Group (GONG), Michelson Doppler Imager (MDI)
and Helioseismic and Magnetic Imager (HMI), by examining the shifts in the mode
frequencies and their sensitivity to solar activity levels. We compare these
shifts and sensitivities with those from radial modes from BiSON. We find that
the medium-degree data show small but significant systematic differences
between the cycles, with solar cycle 24 showing a frequency shift about 10 per
cent larger than cycle 23 for the same change in activity as determined by the
10.7 cm radio flux. This may support the idea that there have been changes in
the magnetic properties of the shallow subsurface layers of the Sun that have
the strongest influence on the frequency shifts.Comment: 6 pages, 3 figures, accepted by MNRAS 3rd July 201
- …
