53 research outputs found
Building consensus on water use assessment of livestock production systems and supply chains: outcome and recommendations from the FAO LEAP partnership.
The FAO Livestock Environmental Assessment and Performance (LEAP) Partnership organised a Technical Advisory Group (TAG) to develop reference guidelines on water footprinting for livestock production systems and supply chains. The mandate of the TAG was to i) provide recommendations to monitor the environmental performance of feed and livestock supply chains over time so that progress towards improvement targets can be measured, ii) be applicable for feed and water demand of small ruminants, poultry, large ruminants and pig supply chains, iii) build on, and go beyond, the existing FAO LEAP guidelines and iv) pursue alignment with relevant international standards, specifically ISO 14040 (2006)/ISO 14044 (2006), and ISO 14046 (2014). The recommended guidelines on livestock water use address both impact assessment (water scarcity footprint as defined by ISO 14046, 2014) and water productivity (water use efficiency). While most aspects of livestock water use assessment have been proposed or discussed independently elsewhere, the TAG reviewed and connected these concepts and information in relation with each other and made recommendations towards comprehensive assessment of water use in livestock production systems and supply chains. The approaches to assess the quantity of water used for livestock systems are addressed and the specific assessment methods for water productivity and water scarcity are recommended. Water productivity assessment is further advanced by its quantification and reporting with fractions of green and blue water consumed. This allows the assessment of the environmental performance related to water use of a livestock-related system by assessing potential environmental impacts of anthropogenic water consumption (only ?blue water?); as well as the assessment of overall water productivity of the system (including ?green? and ?blue water? consumption). A consistent combination of water productivity and water scarcity footprint metrics provides a complete picture both in terms of potential productivity improvements of the water consumption as well as minimizing potential environmental impacts related to water scarcity. This process resulted for the first time in an international consensus on water use assessment, including both the life-cycle assessment community with the water scarcity footprint and the water management community with water productivity metrics. Despite the main focus on feed and livestock production systems, the outcomes of this LEAP TAG are also applicable to many other agriculture sectors
An Indo-Pacifc coral spawning database
The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology
Effects of printed bead volume on thermal history, polymer degree of crystallinity and mechanical properties in large scale additive manufacturing
Effects of printed bead volume on thermal history, polymer degree of crystallinity and mechanical properties in large scale additive manufacturing
One of the promising innovations in additive manufacturing by material extrusion is the usage of large machines that allow building big parts in shorter times. In this case, though, the complex interactions between materials and processing (polymer plasticization, polymer chains inter-diffusion, inter-bead fusion, polymer crystallization etc.) are still not completely understood. The present work brings novel fundamental and quantitative knowledge that would contribute to the development of this technology. Specimens made of a semicrystalline polylactic acid were printed using different bead volumes with a single screw extruder mounted on a robot arm. A cascade effect was identified during production runs: variations in the bead volumes substantially impacted the thermal histories, which influenced polymer crystallization, and this in turn affected the mechanical properties. As a result, a substantial heterogeneity in the degree of crystallinity could be generated in large 3D printed parts, that would induce locally different mechanical properties. Thus, it is clear that not only inter-bead junctions must be considered for understanding the mechanical properties, but also the extent of crystallization of the polymer. Finally, thermal histories of the beads were precisely measured, and these valuable data could help the scientific community to better understand the evolutions of the bead temperature during the production runs
Predictive value of different parameters for stricture recurrence after internal urethrotomy
Synthese et stereochimie de formation d'amines tertiaires β-fluorees par fluoration d'aminoalcools avec la trifluro-1,1,2 chloro-2 N,N-diethyl ethylamine (FAR) et le melange HF - pyridine.
Automatic Identification and Intuitive Map Representation of the Epiretinal Membrane Presence in 3D OCT Volumes
Optical Coherence Tomography (OCT) is a medical image modality providing high-resolution cross-sectional visualizations of the retinal tissues without any invasive procedure, commonly used in the analysis of retinal diseases such as diabetic retinopathy or retinal detachment. Early identification of the epiretinal membrane (ERM) facilitates ERM surgical removal operations. Moreover, presence of the ERM is linked to other retinal pathologies, such as macular edemas, being among the main causes of vision loss. In this work, we propose an automatic method for the characterization and visualization of the ERM's presence using 3D OCT volumes. A set of 452 features is refined using the Spatial Uniform ReliefF (SURF) selection strategy to identify the most relevant ones. Afterwards, a set of representative classifiers is trained, selecting the most proficient model, generating a 2D reconstruction of the ERM's presence. Finally, a post-processing stage using a set of morphological operators is performed to improve the quality of the generated maps. To verify the proposed methodology, we used 20 3D OCT volumes, both with and without the ERM's presence, totalling 2428 OCT images manually labeled by a specialist. The most optimal classifier in the training stage achieved a mean accuracy of 91 . 9 % . Regarding the post-processing stage, mean specificity values of 91 . 9 % and 99 . 0 % were obtained from volumes with and without the ERM's presence, respectively
Structure–barrier property relationship of biodegradable poly(butylene succinate) and poly[(butylene succinate)-co-(butylene adipate)] nanocomposites: influence of the rigid amorphous fraction
International audienc
- …
