388 research outputs found
The discovery and dynamical evolution of an object at the outer edge of Saturn's A ring
This work was supported by the Science and Technology Facilities Council (Grant No. ST/F007566/1) and we are grateful to them for financial assistance. C.D.M. is also grateful to the Leverhulme Trust for the award of a Research Fellowshippublisher PDF not permitted, withdraw
Detection of arcs in Saturn's F ring during the 1995 Sun ring-plane crossing
Observations of the November 1995 Sun crossing of the Saturn's ring-plane
made with the 3.6m CFH telescope, using the UHAO adaptive optics system, are
presented here. We report the detection of four arcs located in the vicinity of
the F ring. They can be seen one day later in HST images. The combination of
both data sets gives accurate determinations of their orbits. Semi-major axes
range from 140020 km to 140080 km, with a mean of 140060 +- 60 km. This is
about 150 km smaller than previous estimates of the F ring radius from Voyager
1 and 2 data, but close to the orbit of another arc observed at the same epoch
in HST images.Comment: 8 pages, 3 figures, 1 table, To appear in A&A, for comments :
[email protected]
Rings in the Solar System: a short review
Rings are ubiquitous around giant planets in our Solar System. They evolve
jointly with the nearby satellite system. They could form either during the
giant planet formation process or much later, as a result of large scale
dynamical instabilities either in the local satellite system, or at the
planetary scale. We review here the main characteristics of rings in our solar
system, and discuss their main evolution processes and possible origin. We also
discuss the recent discovery of rings around small bodies.Comment: Accepted for the Handbook of Exoplanet
Planet Signatures in Collisionally Active Debris Discs: scattered light images
Planet perturbations are often invoked as a potential explanation for many
spatial structures that have been imaged in debris discs. So far this issue has
been mostly investigated with collisionless N-body numerical models. We
numerically investigate how the coupled effect of collisions and radiation
pressure can affect the formation and survival of radial and azimutal
structures in a disc perturbed by a planet. We consider two set-ups: a planet
embedded within an extended disc and a planet exterior to an inner debris ring.
We use the DyCoSS code of Thebault(2012) and derive synthetic images of the
system in scattered light. The planet's mass and orbit, as well as the disc's
collisional activity are explored as free parameters.
We find that collisions always significantly damp planet-induced structures.
For the case of an embedded planet, the planet's signature, mostly a density
gap around its radial position, should remain detectable in head-on images if
M_planet > M_Saturn. If the system is seen edge-on, however, inferring the
presence of the planet is much more difficult, although some planet-induced
signatures might be observable under favourable conditions.
For the inner-ring/external-planet case, planetary perturbations cannot
prevent collision-produced small fragments from populating the regions beyond
the ring: The radial luminosity profile exterior to the ring is close to the
one it should have in the absence of the planet. However, a Jovian planet on a
circular orbit leaves precessing azimutal structures that can be used to
indirectly infer its presence. For a planet on an eccentric orbit, the ring is
elliptic and the pericentre glow effect is visible despite of collisions and
radiation pressure, but detecting such features in real discs is not an
unambiguous indicator of the presence of an outer planet.Comment: Accepted for Publication in A&A (NOTE: Abridged abstract and
(very)LowRes Figures. Better version, with High Res figures and full abstract
can be found at http://lesia.obspm.fr/perso/philippe-thebault/planpapph.pdf
Against all odds? Forming the planet of the HD196885 binary
HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose
orbit places it at the limit for orbital stability. The presence of a planet in
such a highly perturbed region poses a clear challenge to planet-formation
scenarios. We investigate this issue by focusing on the planet-formation stage
that is arguably the most sensitive to binary perturbations: the mutual
accretion of kilometre-sized planetesimals. To this effect we numerically
estimate the impact velocities amongst a population of circumprimary
planetesimals. We find that most of the circumprimary disc is strongly hostile
to planetesimal accretion, especially the region around 2.6AU (the planet's
location) where binary perturbations induce planetesimal-shattering of
more than 1km/s. Possible solutions to the paradox of having a planet in such
accretion-hostile regions are 1) that initial planetesimals were very big, at
least 250km, 2) that the binary had an initial orbit at least twice the present
one, and was later compacted due to early stellar encounters, 3) that
planetesimals did not grow by mutual impacts but by sweeping of dust (the
"snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab
was formed not by core-accretion but by the concurent disc instability
mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical
Astronomy (Special issue on EXOPLANETS
Origin and Evolution of Saturn's Ring System
The origin and long-term evolution of Saturn's rings is still an unsolved
problem in modern planetary science. In this chapter we review the current
state of our knowledge on this long-standing question for the main rings (A,
Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During
the Voyager era, models of evolutionary processes affecting the rings on long
time scales (erosion, viscous spreading, accretion, ballistic transport, etc.)
had suggested that Saturn's rings are not older than 100 My. In addition,
Saturn's large system of diffuse rings has been thought to be the result of
material loss from one or more of Saturn's satellites. In the Cassini era, high
spatial and spectral resolution data have allowed progress to be made on some
of these questions. Discoveries such as the ''propellers'' in the A ring, the
shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume
provide new constraints on evolutionary processes in Saturn's rings. At the
same time, advances in numerical simulations over the last 20 years have opened
the way to realistic models of the rings's fine scale structure, and progress
in our understanding of the formation of the Solar System provides a
better-defined historical context in which to understand ring formation. All
these elements have important implications for the origin and long-term
evolution of Saturn's rings. They strengthen the idea that Saturn's rings are
very dynamical and rapidly evolving, while new arguments suggest that the rings
could be older than previously believed, provided that they are regularly
renewed. Key evolutionary processes, timescales and possible scenarios for the
rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from
Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009)
537-57
Planetary Dynamics and Habitable Planet Formation In Binary Star Systems
Whether binaries can harbor potentially habitable planets depends on several
factors including the physical properties and the orbital characteristics of
the binary system. While the former determines the location of the habitable
zone (HZ), the latter affects the dynamics of the material from which
terrestrial planets are formed (i.e., planetesimals and planetary embryos), and
drives the final architecture of the planets assembly. In order for a habitable
planet to form in a binary star system, these two factors have to work in
harmony. That is, the orbital dynamics of the two stars and their interactions
with the planet-forming material have to allow terrestrial planet formation in
the habitable zone, and ensure that the orbit of a potentially habitable planet
will be stable for long times. We have organized this chapter with the same
order in mind. We begin by presenting a general discussion on the motion of
planets in binary stars and their stability. We then discuss the stability of
terrestrial planets, and the formation of potentially habitable planets in a
binary-planetary system.Comment: 56 pages, 29 figures, chapter to appear in the book: Planets in
Binary Star Systems (Ed. N. Haghighipour, Springer publishing company
- …
