4,479 research outputs found
Where is SUSY?
The direct searches for Superymmetry at colliders can be complemented by
direct searches for dark matter (DM) in underground experiments, if one assumes
the Lightest Supersymmetric Particle (LSP) provides the dark matter of the
universe. It will be shown that within the Constrained minimal Supersymmetric
Model (CMSSM) the direct searches for DM are complementary to direct LHC
searches for SUSY and Higgs particles using analytical formulae. A combined
excluded region from LHC, WMAP and XENON100 will be provided, showing that
within the CMSSM gluinos below 1 TeV and LSP masses below 160 GeV are excluded
(m_{1/2} > 400 GeV) independent of the squark masses.Comment: 16 pages, 10 figure
Recent studies of top quark properties and decays at hadron colliders
The top quark is the heaviest known elementary particle. Observed for the
first time in 1995 at the Tevatron by the CDF and D0 experiments, it has become
object of several studies aimed at fully characterize its properties and
decays. Precise determinations of top quark characteristics verify the internal
consistency of the standard model and are sensitive to new physics phenomena.
With the advent of the large top quark production rates generated at the LHC,
top quark studies have reached unprecedented statistical precision. This review
summarizes the recent measurements of top quark properties and studies of its
decays performed at the LHC and Tevatron.Comment: 13 pages, 4 figures, 5 tables, Presented at Flavor Physics and CP
Violation (FPCP 2012), Hefei, China, May 21-25, 201
Top Quark Physics at the LHC: A Review of the First Two Years
This review summarizes the highlights in the area of top quark physics
obtained with the two general purpose detectors ATLAS and CMS during the first
two years of operation of the Large Hadron Collider LHC. It covers the 2010 and
2011 data taking periods, where the LHC provided pp collisions at a
center-of-mass energy of sqrt(s)=7 TeV. Measurements are presented of the total
and differential top quark pair production cross section in many different
channels, the top quark mass and various other properties of the top quark and
its interactions, for instance the charge asymmetry. Measurements of single top
quark production and various searches for new physics involving top quarks are
also discussed. The already very precise experimental data are in good
agreement with the standard model.Comment: 107 pages, invited review for Int. J. Mod. Phys. A, v2 is identical
to v1 except for the addition of the table of content
Bound-state/elementary-particle duality in the Higgs sector and the case for an excited 'Higgs' within the standard model
Though being weakly interacting, QED can support bound states. In principle,
this can be expected for the weak interactions in the Higgs sector as well. In
fact, it has been argued long ago that there should be a duality between bound
states and the elementary particles in this sector, at least in leading order
in an expansion in the Higgs condensate. Whether this remains true beyond the
leading order is investigated using lattice simulations, and support is found.
This provides a natural interpretation of peaks in cross sections as bound
states. Unambiguously, this would imply the existence of (possibly very broad)
resonances of Higgs and W and Z bound states within the standard model.Comment: 15 pages, 3 figures v2: added appendix with technical details, some
minor improvement
Study of LHC Searches for a Lepton and Many Jets
Searches for new physics in high-multiplicity events with little or no
missing energy are an important component of the LHC program, complementary to
analyses that rely on missing energy. We consider the potential reach of
searches for events with a lepton and six or more jets, and show they can
provide increased sensitivity to many supersymmetric and exotic models that
would not be detected through standard missing-energy analyses. Among these are
supersymmetric models with gauge mediation, R-parity violation, and light
hidden sectors. Moreover, ATLAS and CMS measurements suggest the primary
background in this channel is from t-tbar, rather than W+jets or QCD, which
reduces the complexity of background modeling necessary for such a search. We
also comment on related searches where the lepton is replaced with another
visible object, such as a Z boson.Comment: 23 pages, 12 figures, 1 tabl
First Limits on Left-Right Symmetry Scale from LHC Data
We use the early Large Hadron Collider data to set the lower limit on the
scale of Left-Right symmetry, by searching for the right-handed charged gauge
boson via the final state with two leptons and two jets, for 33/pb
integrated luminosity and 7 TeV center-of-mass energy. In the absence of a
signal beyond the Standard Model background, we set the bound M_WR > 1.4 TeV at
95% C.L.. This result is obtained for a range of right-handed neutrino masses
of the order of few 100 GeV, assuming no accidental cancelation in right-handed
lepton mixings.Comment: 4 pages, added reference
The generalised NMSSM at one loop: fine tuning and phenomenology
We determine the degree of fine tuning needed in a generalised version of the
NMSSM that follows from an underlying Z4 or Z8 R symmetry. We find that it is
significantly less than is found in the MSSM or NMSSM and extends the range of
Higgs mass that have acceptable fine tuning up to Higgs masses of mh ~ 130 GeV.
For universal boundary conditions analogous to the CMSSM the phenomenology is
rather MSSM like with the singlet states typically rather heavy. For more
general boundary conditions the singlet states can be light, leading to
interesting signatures at the LHC and direct detection experiments.Comment: 20 pages, 9 figures, matches published versio
Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level
We provide a comparative study of the fine tuning amount (Delta) at the
two-loop leading log level in supersymmetric models commonly used in SUSY
searches at the LHC. These are the constrained MSSM (CMSSM), non-universal
Higgs masses models (NUHM1, NUHM2), non-universal gaugino masses model (NUGM)
and GUT related gaugino masses models (NUGMd). Two definitions of the fine
tuning are used, the first (Delta_{max}) measures maximal fine-tuning wrt
individual parameters while the second (Delta_q) adds their contribution in
"quadrature". As a direct result of two theoretical constraints (the EW minimum
conditions), fine tuning (Delta_q) emerges as a suppressing factor (effective
prior) of the averaged likelihood (under the priors), under the integral of the
global probability of measuring the data (Bayesian evidence p(D)). For each
model, there is little difference between Delta_q, Delta_{max} in the region
allowed by the data, with similar behaviour as functions of the Higgs, gluino,
stop mass or SUSY scale (m_{susy}=(m_{\tilde t_1} m_{\tilde t_2})^{1/2}) or
dark matter and g-2 constraints. The analysis has the advantage that by
replacing any of these mass scales or constraints by their latest bounds one
easily infers for each model the value of Delta_q, Delta_{max} or vice versa.
For all models, minimal fine tuning is achieved for M_{higgs} near 115 GeV with
a Delta_q\approx Delta_{max}\approx 10 to 100 depending on the model, and in
the CMSSM this is actually a global minimum. Due to a strong (
exponential) dependence of Delta on M_{higgs}, for a Higgs mass near 125 GeV,
the above values of Delta_q\approx Delta_{max} increase to between 500 and
1000. Possible corrections to these values are briefly discussed.Comment: 23 pages, 46 figures; references added; some clarifications (section
2
Higgs After the Discovery: A Status Report
Recently, the ATLAS and CMS collaborations have announced the discovery of a
125 GeV particle, commensurable with the Higgs boson. We analyze the 2011 and
2012 LHC and Tevatron Higgs data in the context of simplified new physics
models, paying close attention to models which can enhance the diphoton rate
and allow for a natural weak-scale theory. Combining the available LHC and
Tevatron data in the ZZ* 4-lepton, WW* 2-lepton, diphoton, and b-bbar channels,
we derive constraints on the effective low-energy theory of the Higgs boson. We
map several simplified scenarios to the effective theory, capturing numerous
new physics models such as supersymmetry, composite Higgs, dilaton. We further
study models with extended Higgs sectors which can naturally enhance the
diphoton rate. We find that the current Higgs data are consistent with the
Standard Model Higgs boson and, consequently, the parameter space in all models
which go beyond the Standard Model is highly constrained.Comment: 37 pages; v2: ATLAS dijet-tag diphoton channel added, dilaton and
doublet-singlet bugs corrected, references added; v3: ATLAS WW channel
included, comments and references adde
- …
