510 research outputs found
Energy composition of the Universe: time-independent internal symmetry
The energy composition of the Universe, as emerged from the Type Ia supernova
observations and the WMAP data, looks preposterously complex, -- but only at
the first glance. In fact, its structure proves to be simple and regular. An
analysis in terms of the Friedmann integral enables to recognize a remarkably
simple time-independent covariant robust recipe of the cosmic mix: the
numerical values of the Friedmann integral for vacuum, dark matter, baryons and
radiation are approximately identical. The identity may be treated as a
symmetry relation that unifies cosmic energies into a regular set, a quartet,
with the Friedmann integral as its common genuine time-independent physical
parameter. Such cosmic internal (non-geometrical) symmetry exists whenever
cosmic energies themselves exist in nature. It is most natural for a finite
Universe suggested by the WMAP data. A link to fundamental theory may be found
under the assumption about a special significance of the electroweak energy
scale in both particle physics and cosmology. A freeze-out model developed on
this basis demonstrates that the physical nature of new symmetry might be due
to the interplay between electroweak physics and gravity at the cosmic age of a
few picoseconds. The big `hierarchy number' of particle physics represents the
interplay in the model. This number quantifies the Friedmann integral and gives
also a measure to some other basic cosmological figures and phenomena
associated with new symmetry. In this way, cosmic internal symmetry provides a
common ground for better understanding of old and recent problems that
otherwise seem unrelated; the coincidence of the observed cosmic densities, the
flatness of the co-moving space, the initial perturbations and their amplitude,
the cosmic entropy are among them.Comment: 32 page
Zeldovich flow on cosmic vacuum background: new exact nonlinear analytical solution
A new exact nonlinear Newtonian solution for a plane matter flow superimposed
on the isotropic Hubble expansion is reported. The dynamical effect of cosmic
vacuum is taken into account. The solution describes the evolution of nonlinear
perturbations via gravitational instability of matter and the termination of
the perturbation growth by anti-gravity of vacuum at the epoch of transition
from matter domination to vacuum domination. On this basis, an `approximate' 3D
solution is suggested as an analog of the Zeldovich ansatz.Comment: 9 pages, 1 figure
The Hall instability of weakly ionized, radially stratified, rotating disks
Cool weakly ionized gaseous rotating disk, are considered by many models as
the origin of the evolution of protoplanetary clouds. Instabilities against
perturbations in such disks play an important role in the theory of the
formation of stars and planets. Thus, a hierarchy of successive fragmentations
into smaller and smaller pieces as a part of the Kant-Laplace theory of
formation of the planetary system remains valid also for contemporary
cosmogony. Traditionally, axisymmetric magnetohydrodynamic (MHD), and recently
Hall-MHD instabilities have been thoroughly studied as providers of an
efficient mechanism for radial transfer of angular momentum, and of density
radial stratification. In the current work, the Hall instability against
nonaxisymmetric perturbations in compressible rotating fluids in external
magnetic field is proposed as a viable mechanism for the azimuthal
fragmentation of the protoplanetary disk and thus perhaps initiating the road
to planet formation. The Hall instability is excited due to the combined effect
of the radial stratification of the disk and the Hall electric field, and its
growth rate is of the order of the rotation period.Comment: 15 pages, 2 figure
Polygonal Structures in the Gaseous Disk: Numerical Simulations
The results of numerical simulations of a gaseous disk in the potential of a
stellar spiral density wave are presented. The conditions under which
straightened spiral arm segments (rows) form in the gas component are studied.
These features of the spiral structure were identified in a series of works by
A.D. Chernin with coauthors. Gas-dynamic simulations have been performed for a
wide range of model parameters: the pitch angle of the spiral pattern, the
amplitude of the stellar spiral density wave, the disk rotation speed, and the
temperature of the gas component. The results of 2D- and 3D-disk simulations
are compared. The rows in the numerical simulations are shown to be an
essentially nonstationary phenomenon. A statistical analysis of the
distribution of geometric parameters for spiral patterns with rows in the
observed galaxies and the constructed hydrodynamic models shows good agreement.
In particular, the numerical simulations and observations of galaxies give
for the average angles between straight segments.Comment: 22 pages, 10 figure
The Polarization of the Cosmic Microwave Background Due to Primordial Gravitational Waves
We review current observational constraints on the polarization of the Cosmic
Microwave Background (CMB), with a particular emphasis on detecting the
signature of primordial gravitational waves. We present an analytic solution to
the Polanarev approximation for CMB polarization produced by primordial
gravitational waves. This simplifies the calculation of the curl, or B-mode
power spectrum associated with gravitational waves during the epoch of
cosmological inflation. We compare our analytic method to existing numerical
methods and also make predictions for the sensitivity of upcoming CMB
polarization observations to the inflationary gravitational wave background. We
show that upcoming experiments should be able either detect the relic
gravitational wave background or completely rule out whole classes of
inflationary models.Comment: 25 pages, 4 figures, review published in IJMP
A SCUBA survey of the NGC 2068/2071 protoclusters
We report the results of a submillimeter dust continuum survey of the
protoclusters NGC 2068 and NGC 2071 in Orion B carried out at 850 microns and
450 microns with SCUBA on JCMT. The mapped region is ~ 32' x 18' in size (~ 4
pc x 2 pc) and consists of filamentary dense cores which break up into
small-scale (~ 5000 AU) fragments, including 70 starless condensations and 5
circumstellar envelopes/disks. The starless condensations, seen on the same
spatial scales as protostellar envelopes, are likely to be gravitationally
bound and pre-stellar in nature. Their mass spectrum, ranging from ~ 0.3 Msun
to ~ 5 Msun, is reminiscent of the stellar initial mass function (IMF). Their
mass-size relation suggests that they originate from gravitationally-driven
fragmentation. We thus argue that pre-collapse cloud fragmentation plays a
major role in shaping the IMF.Comment: 6 pages, 4 figures, 1 table. Letter accepted by Astronomy &
Astrophysic
Mapping the three-body system - decay time and reversibility
In this paper we carry out a quantitative analysis of the three-body systems
and map them as a function of decaying time and intial conguration, look at
this problem as an example of a simple deterministic system, and ask to what
extent the orbits are really predictable. We have investigated the behavior of
about 200 000 general Newtonian three body systems using the simplest initial
conditions. Within our resolution these cover all the possible states where the
objects are initially at rest and have no angular momentum. We have determined
the decay time-scales of the triple systems and show that the distribution of
this parameter is fractal in appearance. Some areas that appear stable on large
scales exhibit very narrow strips of instability and the overall pattern,
dominated by resonances, reminds us of a traditional Maasai warrior shield.
Also an attempt is made to recover the original starting conguration of the
three bodies by backward integration. We find there are instances where the
evolution to the future and to the past lead to different orbits, in spite of
time symmetric initial conditions. This implies that even in simple
deterministic systems there exists an Arrow of Time.Comment: 8 pages, 9 figures. Accepted for publication in MNRAS. Includes
low-resolution figures. High-resolution figures are available as PNG
Large-scale instability in a sheared nonhelical turbulence: formation of vortical structures
We study a large-scale instability in a sheared nonhelical turbulence that
causes generation of large-scale vorticity. Three types of the background
large-scale flows are considered, i.e., the Couette and Poiseuille flows in a
small-scale homogeneous turbulence, and the "log-linear" velocity shear in an
inhomogeneous turbulence. It is known that laminar plane Couette flow and
antisymmetric mode of laminar plane Poiseuille flow are stable with respect to
small perturbations for any Reynolds numbers. We demonstrate that in a
small-scale turbulence under certain conditions the large-scale Couette and
Poiseuille flows are unstable due to the large-scale instability. This
instability causes formation of large-scale vortical structures stretched along
the mean sheared velocity. The growth rate of the large-scale instability for
the "log-linear" velocity shear is much larger than that for the Couette and
Poiseuille background flows. We have found a turbulent analogue of the
Tollmien-Schlichting waves in a small-scale sheared turbulence. A mechanism of
excitation of turbulent Tollmien-Schlichting waves is associated with a
combined effect of the turbulent Reynolds stress-induced generation of
perturbations of the mean vorticity and the background sheared motions. These
waves can be excited even in a plane Couette flow imposed on a small-scale
turbulence when perturbations of mean velocity depend on three spatial
coordinates. The energy of these waves is supplied by the small-scale sheared
turbulence.Comment: 12 pages, 14 figures, Phys. Rev. E, in pres
Between feminism and anorexia: An autoethnography
Critical feminist work on eating disorders has grown substantially since its establishment in the 1980s, and has increasingly incorporated the use of anorexic stories, voices and experiences. Yet rarely do such accounts offer the anorexic a space to respond to the now established feminist conceptions of the problem which structure the books or articles in which they appear. Anorexic, or recovered anorexic, voices are used by the researcher to interpret the role played by gender, even whilst the subjects are invited to respond to and critique, medical and popular discourses on the disorder. This lack of dialogue is all the more striking in the context of the feminist aim to fight ‘back against the tendency to silence anorexic women’s’ own interpretations of their starving, treatment and construction (Saukko, 2008: 34). As someone who suffered from anorexia for 20 years, this article offers an autoethnographic account of my experience of encountering the feminist literature on anorexia in a bid to speak back, or enter into a dialogue between feminist politics and eating disorder experience
- …
