361 research outputs found
Gaussian multiplicative Chaos for symmetric isotropic matrices
Motivated by isotropic fully developed turbulence, we define a theory of
symmetric matrix valued isotropic Gaussian multiplicative chaos. Our
construction extends the scalar theory developed by J.P. Kahane in 1985
Matrix exponential-based closures for the turbulent subgrid-scale stress tensor
Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy
Intermittency of velocity time increments in turbulence
We analyze the statistics of turbulent velocity fluctuations in the time
domain. Three cases are computed numerically and compared: (i) the time traces
of Lagrangian fluid particles in a (3D) turbulent flow (referred to as the
"dynamic" case); (ii) the time evolution of tracers advected by a frozen
turbulent field (the "static" case), and (iii) the evolution in time of the
velocity recorded at a fixed location in an evolving Eulerian velocity field,
as it would be measured by a local probe (referred to as the "virtual probe"
case). We observe that the static case and the virtual probe cases share many
properties with Eulerian velocity statistics. The dynamic (Lagrangian) case is
clearly different; it bears the signature of the global dynamics of the flow.Comment: 5 pages, 3 figures, to appear in PR
Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations
We present a formal tool for verification of multivariate nonlinear
inequalities. Our verification method is based on interval arithmetic with
Taylor approximations. Our tool is implemented in the HOL Light proof assistant
and it is capable to verify multivariate nonlinear polynomial and
non-polynomial inequalities on rectangular domains. One of the main features of
our work is an efficient implementation of the verification procedure which can
prove non-trivial high-dimensional inequalities in several seconds. We
developed the verification tool as a part of the Flyspeck project (a formal
proof of the Kepler conjecture). The Flyspeck project includes about 1000
nonlinear inequalities. We successfully tested our method on more than 100
Flyspeck inequalities and estimated that the formal verification procedure is
about 3000 times slower than an informal verification method implemented in
C++. We also describe future work and prospective optimizations for our method.Comment: 15 page
Lagrangian dynamics and statistical geometric structure of turbulence
The local statistical and geometric structure of three-dimensional turbulent
flow can be described by properties of the velocity gradient tensor. A
stochastic model is developed for the Lagrangian time evolution of this tensor,
in which the exact nonlinear self-stretching term accounts for the development
of well-known non-Gaussian statistics and geometric alignment trends. The
non-local pressure and viscous effects are accounted for by a closure that
models the material deformation history of fluid elements. The resulting
stochastic system reproduces many statistical and geometric trends observed in
numerical and experimental 3D turbulent flows, including anomalous relative
scaling.Comment: 5 pages, 5 figures, final version, publishe
Fully developed turbulence and the multifractal conjecture
We review the Parisi-Frisch MultiFractal formalism for
Navier--Stokes turbulence with particular emphasis on the issue of
statistical fluctuations of the dissipative scale. We do it for both Eulerian
and Lagrangian Turbulence. We also show new results concerning the application
of the formalism to the case of Shell Models for turbulence. The latter case
will allow us to discuss the issue of Reynolds number dependence and the role
played by vorticity and vortex filaments in real turbulent flows.Comment: Special Issue dedicated to E. Brezin and G. Paris
Lagrangian Velocity Statistics in Turbulent Flows: Effects of Dissipation
We use the multifractal formalism to describe the effects of dissipation on
Lagrangian velocity statistics in turbulent flows. We analyze high Reynolds
number experiments and direct numerical simulation (DNS) data. We show that
this approach reproduces the shape evolution of velocity increment probability
density functions (PDF) from Gaussian to stretched exponentials as the time lag
decreases from integral to dissipative time scales. A quantitative
understanding of the departure from scaling exhibited by the magnitude
cumulants, early in the inertial range, is obtained with a free parameter
function D(h) which plays the role of the singularity spectrum in the
asymptotic limit of infinite Reynolds number. We observe that numerical and
experimental data are accurately described by a unique quadratic D(h) spectrum
which is found to extend from to , as
the signature of the highly intermittent nature of Lagrangian velocity
fluctuations.Comment: 5 pages, 3 figures, to appear in PR
Static spectroscopy of a dense superfluid
Dense Bose superfluids, as HeII, differ from dilute ones by the existence of
a roton minimum in their excitation spectrum. It is known that this roton
minimum is qualitatively responsible for density oscillations close to any
singularity, such as vortex cores, or close to solid boundaries. We show that
the period of these oscillations, and their exponential decrease with the
distance to the singularity, are fully determined by the position and the width
of the roton minimum. Only an overall amplitude factor and a phase shift are
shown to depend on the details of the interaction potential. Reciprocally, it
allows for determining the characteristics of this roton minimum from static
"observations" of a disturbed ground state, in cases where the dynamics is not
easily accessible. We focus on the vortex example. Our analysis further shows
why the energy of these oscillations is negligible compared to the kinetic
energy, which limits their influence on the vortex dynamics, except for high
curvatures.Comment: 14 pages, 4 figures, extended version, published in J. Low Temp. Phy
Acceleration and vortex filaments in turbulence
We report recent results from a high resolution numerical study of fluid
particles transported by a fully developed turbulent flow. Single particle
trajectories were followed for a time range spanning more than three decades,
from less than a tenth of the Kolmogorov time-scale up to one large-eddy
turnover time. We present some results concerning acceleration statistics and
the statistics of trapping by vortex filaments.Comment: 10 pages, 5 figure
Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq
International audienceThe verification of floating-point mathematical libraries requires computing numerical bounds on approximation errors. Due to the tightness of these bounds and the peculiar structure of approximation errors, such a verification is out of the reach of generic tools such as computer algebra systems. In fact, the inherent difficulty of computing such bounds often mandates a formal proof of them. In this paper, we present a tactic for the Coq proof assistant that is designed to automatically and formally prove bounds on univariate expressions. It is based on a formalization of floating-point and interval arithmetic, associated with an on-the-fly computation of Taylor expansions. All the computations are performed inside Coq's logic, in a reflexive setting. This paper also compares our tactic with various existing tools on a large set of examples
- …
