46 research outputs found
Modeling the Transport and Deposition of ¹⁰Be Produced by the Strongest Solar Proton Event During the Holocene
Prominent excursions in the number of cosmogenic nuclides (e.g., ¹⁰Be) around 774 CE/775 document the most severe solar proton event (SPE) throughout the Holocene. Its manifestation in ice cores is valuable for geochronology, but also for solar-terrestrial physics and climate modeling. Using the ECHAM/MESSy Atmospheric Chemistry (EMAC) climate model in combination with the Warning System for Aviation Exposure to SEP (WASAVIES), we investigate the transport, mixing, and deposition of the cosmogenic nuclide ¹⁰Be produced by the 774 CE/775 SPE. By comparing the model results to the reconstructed ¹⁰Be time series from four ice core records, we study the atmospheric pathways of ¹⁰Be from its stratospheric source to its sink at Earth's surface. The reconstructed post-SPE evolution of the ¹⁰Be surface fluxes at the ice core sites is well captured by the model. The downward transport of the ¹⁰Be atoms is controlled by the Brewer-Dobson circulation in the stratosphere and cross-tropopause transport via tropopause folds or large-scale sinking. Clear hemispheric differences in the transport and deposition processes are identified. In both polar regions the ¹⁰Be surface fluxes peak in summertime, with a larger influence of wet deposition on the seasonal ¹⁰Be surface flux in Greenland than in Antarctica. Differences in the peak ¹⁰Be surface flux following the 774 CE/775 SPE at the drilling sites are explained by specific meteorological conditions depending on the geographic locations of the sites
Ciliary Beating Recovery in Deficient Human Airway Epithelial Cells after Lentivirus Ex Vivo Gene Therapy
Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1–deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT–PCR and western blot, respectively. Human airway epithelial cells that were DNAI1–deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease
Climate change and oak growth decline: Dendroecology and stand productivity of a Turkey oak (Quercus cerris L.) old stored coppice in Central Italy
• We combined stem volume increment analysis with dendroecological tools to address two
unresolved issues concerning oak dieback in Mediterranean areas: early detection of
changes in stand growth, and identification of mechanisms for observed growth
declines.
• We reconstructed productivity of a stored coppice formed by Turkey oak (Quercus
cerris) to test if its growth decline was linked to climatic variability, while
also accounting for age-related and sociological factors.
• Drought in May–June and in prior-year late summer-autumn was negatively correlated with
current growth during 1974–2006. Previous November water balance was the strongest signal.
Moving Correlation Functions (11 y windows) indicated that the May–June signal remained
dominant until 1996, thereafter falling to non-significant values in parallel with the
May–June water balance drying trend; at the same time the previous autumn correlations
reached significant values. Since 1994 there was a two-year lagged response to June water
balance, suggesting that, when growth declined, loss of current-year climate signals was
accompanied by the emergence of previous-year ones.
• Growth and productivity of deciduous oaks in Mediterranean environments is linked to
late spring-early summer hydrologic balance; at both annual and decadal timescales, oak
growth decline was associated with a delayed response to climate
Intestinal parasitic infections in HIV-infected patients, Lao People's Democratic Republic
HIV infection is an emerging problem in Laos. We conducted the first prospective study on intestinal parasites, including opportunistic protozoa, in newly diagnosed HIV infected patients, with or without diarrhea. The aims were to describe the spectrum of infections, to determine their prevalence and to assess their associations with diarrhea, CD4 cell count, place of residence and living conditions.; One to three stool samples over consecutive days were obtained from 137 patients. The Kato thick smear method, formalin-ethyl concentration and specific stains for coccidia and microsporidia diagnosis were performed on 260 stool samples. Baseline characteristics regarding relevant demographics, place of residence and living conditions, clinical features including diarrhea, were collected using a standardized questionnaire.; The 137 patients were young (median age: 36 years) and severely immunocompromised (83.9% at WHO stage 3 or 4, median CD4 cell count: 41/mm3). Diarrhea was present in 43.0% of patients. Parasite infection was found in 78.8% of patients, infection with at least two species in 49.6%. Prevalence rates of protozoan and helminth infections were similar (54.7% and 58.4% respectively). Blastocystis sp. was the most frequent protozoa (26.3%). Cryptosporidium sp., Cytoisospora belli and microsporidia, found at low prevalence rates (6.6%, 4.4%, 2.9%, respectively), were described for the first time in Laos. Cryptosporidium sp. was associated with persistent diarrhea. Strongyloides stercoralis was the most prevalent helminth following Opisthorchis viverrini (20.4% and 47.5% respectively). The most immunocompromised patients, as assessed by a CD4 count ≤ 50 cells/mm3, were more likely to be infected with intestinal parasites.; HIV infection was mainly diagnosed at an advanced stage of immunosuppression in Lao patients. Intestinal parasite infections were highly prevalent regardless of their diarrheal status. Opportunistic infections were reported. Improving the laboratory diagnosis of intestinal parasite infections and the knowledge on their local risk factors is warranted
Dendrochronological potential and productivity of tropical tree species in Western Kenya
This study focuses on tropical tree growth rates in Western Kenya. The dendrochronological potential of each study species was determined by visual examination of rings, and then cumulative growth trajectories for diameter were synthesized for species of sufficient sample size (n ≥ 3), based on ring-width chronologies. The 14 tree species considered were: Acacia mearnsii, Bridelia micrantha, Combretum molle, Croton macrostachyus, Cupressus lustianica, Eucalyptus camaldulensis, Eucalyptus grandis, Eucalyptus saligna, Grevillea robusta, Mangifera indica, Markhamia lutea, Persia Americana, Syzygium cumini, and Trilepisium madagascariensis. The species with the highest dendrochronological potential included Acacia mearnsii, Cupressus lusitanica, the Eucalyptus spp. and Mangifera indica, which are all non-native species that successfully crossdated. The results also indicated that the species with highest dendrochronological potential had strong radial growth synchrony, which was reflected in high inter-tree correlation and (or) high growth variance explained by the first principal component axis. Furthermore, A. mearnsii and E. camaldulensis were sensitive to annual precipitation and moisture index. The species with the lowest dendrochronological potential were Grevillea robusta and Markhamia lutea. In terms of productivity, the three fastest growing species in the study, based on annual diameter increment, were Eucalyptus camaldulensis, Eucalyptus grandis, and Acacia mearnsii. This study also has great potential to extrapolate historical patterns of diameter growth to understanding annual aboveground biomass and carbon dynamics in Western Kenya.This item is part of the Tree-Ring Research (formerly Tree-Ring Bulletin) archive. For more information about this peer-reviewed scholarly journal, please email the Editor of Tree-Ring Research at [email protected]
Quantitative measurements of free and immobilized RgDAAO Michaelis-Menten constant using an electrochemical assay reveal the impact of covalent cross-linking on substrate specificity
Challenges facing enzyme-based electrochemical sensors include substrate specificity, batch to batch reproducibility, and lack of quantitative metrics related to the effect of enzyme immobilization. We present a quick, simple, and general approach for measuring the effect of immobilization and cross-linking on enzyme activity and substrate specificity. The method can be generalized for electrochemical biosensors using an enzyme that releases hydrogen peroxide during its catalytic cycle. Using as proof of concept RgDAAO-based electrochemical biosensors, we found that the Michaelis-Menten constant (Km) decreases post immobilization, hinting at alterations in the enzyme kinetic properties and thus substrate specificity. We confirm the decrease in Km electrochemically by characterizing the substrate specificity of the immobilized RgDAAO using chronoamperometry. Our results demonstrate that enzyme immobilization affects enzyme substrate specificity and this must be carefully evaluated during biosensor development. Graphical abstract: [Figure not available: see fulltext.
Dendroclimatic analysis of white pine (Pinus strobus L.) using long-term provenance test sites across eastern North America
Abstract Background The main objective of this study was to examine the climatic sensitivity of the radial growth response of 13 eastern white pine (Pinus strobus L.) provenances planted at seven test sites throughout the northern part of the species’ native distribution in eastern North America. Methods The test sites (i.e., Wabeno, Wisconsin, USA; Manistique, Michigan, USA; Pine River, Michigan, USA; Newaygo, Michigan, USA; Turkey Point, Ontario, Canada; Ganaraska, Ontario, Canada; and Orono, Maine, USA) examined in this study were part of a range-wide white pine provenance trial established in the early 1960s in the eastern United States and Canada. Principal components analysis (PCA) was used to examine the main modes of variation [first (PC1) and second (PC2) principal component axes] in the standardized radial growth indices of the provenances at each test site. The year scores for PC1 and PC2 were examined in relation to an array of test site climate variables using multiple regression analysis to examine the commonality of growth response across all provenances to the climate of each test site. Provenance loadings on PC1 and PC2 were correlated with geographic parameters (i.e., latitude, longitude, elevation) and a suite of biophysical parameters associated with provenance origin location. Results The amount of variation in radial growth explained by PC1 and PC2 ranged from 43.4% to 89.6%. Dendroclimatic models revealed that white pine radial growth responses to climate were complex and differed among sites. The key dendroclimatic relationships observed included sensitivity to high temperature in winter and summer, cold temperature in the spring and fall (i.e., beginning and end of the growing season), summer moisture stress, potential sensitivity to storm-induced damage in spring and fall, and both positive and negative effects of higher winter snowfall. Separation of the loadings of provenances on principal component axes was mainly associated with temperature-related bioclimatic parameters of provenance origin at 5 of the 7 test sites close to the climate influence of the Great Lakes (i.e., Wabeno, Manistique, Pine River, Newaygo, and Turkey Point). In contrast, differences in radial growth response to climate at the Ganaraska test site, were driven more by precipitation-related bioclimatic parameters of the provenance origin location while radial growth at the easternmost Orono test site was independent of bioclimate at the provenance origin location. Conclusions Study results suggest that genetic adaptation to temperature and precipitation regime may significantly influence radial growth performance of white pine populations selected for use in assisted migration programs to better adapt white pine to a future climate
Modeling the Transport and Deposition of 10Be Produced by the Strongest Solar Proton Event During the Holocene
Prominent excursions in the number of cosmogenic nuclides (e.g., 10Be) around 774 CE/775 document the most severe solar proton event (SPE) throughout the Holocene. Its manifestation in ice cores is valuable for geochronology, but also for solar-terrestrial physics and climate modeling. Using the ECHAM/MESSy Atmospheric Chemistry (EMAC) climate model in combination with the Warning System for Aviation Exposure to SEP (WASAVIES), we investigate the transport, mixing, and deposition of the cosmogenic nuclide 10Be produced by the 774 CE/775 SPE. By comparing the model results to the reconstructed 10Be time series from four ice core records, we study the atmospheric pathways of 10Be from its stratospheric source to its sink at Earth's surface. The reconstructed post-SPE evolution of the 10Be surface fluxes at the ice core sites is well captured by the model. The downward transport of the 10Be atoms is controlled by the Brewer-Dobson circulation in the stratosphere and cross-tropopause transport via tropopause folds or large-scale sinking. Clear hemispheric differences in the transport and deposition processes are identified. In both polar regions the 10Be surface fluxes peak in summertime, with a larger influence of wet deposition on the seasonal 10Be surface flux in Greenland than in Antarctica. Differences in the peak 10Be surface flux following the 774 CE/775 SPE at the drilling sites are explained by specific meteorological conditions depending on the geographic locations of the sites
