173 research outputs found
History and current research in the field of radiochemistry at Maria Curie-Skłodowska University
The temperature effect on electrokinetic properties of the silica–polyvinyl alcohol (PVA) system
The influence of polyvinyl alcohol (PVA) adsorption on the structure of the diffuse layer of silica (SiO2) in the temperature range 15–35 °C was examined. The microelectrophoresis method was used in the experiments to determine the zeta potential of the solid particles in the absence and presence of the polymer. The adsorption of PVA macromolecules causes the zeta potential decrease in all investigated SiO2 systems. Moreover this, decrease is the most pronounced at the highest examined temperature. Obtained results indicate that the conformational changes of adsorbed polymer chains are responsible for changes in electrokinetic properties of silica particles. Moreover, the structure of diffuse layer on the solid surface with adsorbed polymer results from the following effects: the presence of acetate groups in PVA chains, the blockade of silica surface groups by adsorbed polymer and the shift of slipping plane due to macromolecules adsorption
Methods to study microbial adhesion on abiotic surfaces
Microbial biofilms are a matrix of cells and exopolymeric substances attached to a wet and solid surface and are commonly associated to several problems, such as biofouling and corrosion in industries and infectious diseases in urinary catheters and prosthesis. However, these cells may have several benefits in distinct applications, such as wastewater treatment processes, microbial fuel cells for energy production and biosensors. As microbial adhesion is a key step on biofilm formation, it is very important to understand and characterize microbial adhesion to a surface. This study presents an overview of predictive and experimental methods used for the study of bacterial adhesion. Evaluation of surface physicochemical properties have a limited capacity in describing the complex adhesion process. Regarding the experimental methods, there is no standard method or platform available for the study of microbial adhesion and a wide variety of methods, such as colony forming units counting and microscopy techniques, can be applied for quantification and characterization of the adhesion process.This work was financially supported by: Project UID/EQU/00511/2013-LEPABE, by the FCT/MEC with national funds and co-funded by FEDER in the scope of the P2020 Partnership Agreement; Project NORTE-07-0124-FEDER-000025 - RL2_Environment&Health, by FEDER funds through Programa Operacional Factores de Competitividade-COMPETE, by the Programa Operacional do Norte (ON2) program and by national funds through FCT - Fundacao para a Ciencia e a Tecnologia; European Research Project SusClean (Contract number FP7-KBBE-2011-5, project number: 287514), Scholarships SFRH/BD/52624/2014, SFRH/BD/88799/2012 and SFRH/BD/103810/2014
The Influence of Protonation on the Electroreduction of Bi (III) Ions in Chlorates (VII) Solutions of Different Water Activity
Investigation of the polyvinyl alcohol stabilization mechanism and adsorption properties on the surface of ternary mixed nanooxide AST 50 (Al2O3–SiO2–TiO2)
Determination of relevance between surface free energy and adsorption capacity of cement particles
ABSTRACT The compatibility between superplasticizer and cement was influenced by the adsorption capacity of cement particles. This study investigated the relevance between the adsorption capability and surface free energy. Adsorption capacity and surface free energy of both sulphoaluminate cement and portland cement were measured. The adsorption capacity of cement particles was measured by ultraviolet spectrophotometry. The test showed that particles of sulphoaluminate cement adsorbed more molecules of superplasticizer than portland cement particles. The weight of superplasticizer adsorbed by 2g of sulphoaluminate cement and portland cement were 0.28mg and 0.159mg respectively. Surface free energy of cement particles was calculated by contact angle and the contact angles were determined by the thin-layer wicking technique and washburn equation which is theoretical basis of thin-layer wiching technique presented by Chibowski E. The sulphoaluminate cement, portland cement's surface free energy were 51.46 mJ·m-2 and 49.36 mJ·m-2 respectively. The results showed that the higher adsorption capacity of particles was usual accompanied by higher surface free energy. The fluidity of cement paste was influenced by the adsorption capacity of cement particles because the more molecules of superplasticizer was adsorbed by cement particles there were lacking superplasticizer in the paste. The macro-behaviour of higher adsorption capacity is that the cement paste need more superplasticizer to reach the needed fluidity
Impact of poly(vinyl alcohol) adsorption on the surface characteristics of mixed oxide Mn x O y –SiO2
- …
