1,564 research outputs found
Energetics and Vibrational States for Hydrogen on Pt(111)
We present a combination of theoretical calculations and experiments for the
low-lying vibrational excitations of H and D atoms adsorbed on the Pt(111)
surface. The vibrational band states are calculated based on the full
three-dimensional adiabatic potential energy surface obtained from first
principles calculations. For coverages less than three quarters of a monolayer,
the observed experimental high-resolution electron peaks at 31 and 68meV are in
excellent agreement with the theoretical transitions between selected bands.
Our results convincingly demonstrate the need to go beyond the local harmonic
oscillator picture to understand the dynamics of this system.Comment: In press at Phys. Rev. Lett - to appear in April 200
Inflationary and dark energy regimes in 2+1 dimensions
In this work we investigate the behavior of three-dimensional (3D)
cosmological models. The simulation of inflationary and dark-energy-dominated
eras are among the possible results in these 3D formulations; taking as
starting point the results obtained by Cornish and Frankel.
Motivated by those results, we investigate, first, the inflationary case
where we consider a two-constituent cosmological fluid: the scalar field
represents the hypothetical inflaton which is in gravitational interaction with
a matter/radiation contribution. For the description of an old universe, it is
possible to simulate its evolution starting with a matter dominated universe
that faces a decelerated/accelerated transition due to the presence of the
additional constituent (simulated by the scalar field or ruled by an exotic
equation of state) that plays the role of dark energy. We obtain, through
numerical analysis, the evolution in time of the scale factor, the
acceleration, the energy densities, and the hydrostatic pressure of the
constituents. The alternative scalar cosmology proposed by Cornish and Frankel
is also under investigation in this work. In this case an inflationary model
can be constructed when another non-polytropic equation of state (the van der
Waals equation) is used to simulate the behavior of an early 3D universe.Comment: Latex file, plus 9 figures. To appear in General Relativity and
Gravitatio
Spontaneous Polarisation Build up in a Room Temperature Polariton Laser
We observe the build up of strong (~50%) spontaneous vector polarisation in
emission from a GaN-based polariton laser excited by short optical pulses at
room temperature. The Stokes vector of emitted light changes its orientation
randomly from one excitation pulse to another, so that the time-integrated
polarisation remains zero. This behaviour is completely different to any
previous laser. We interpret this observation in terms of the spontaneous
symmetry breaking in a Bose-Einstein condensate of exciton-polaritons
Beam-Normal Single Spin Asymmetry in Elastic Electron Scattering off Si and Zr
We report on a new measurement of the beam-normal single spin asymmetry
in the elastic scattering of 570 MeV transversely polarized
electrons off Si and Zr at . The
studied kinematics allow for a comprehensive comparison with former results on
C. No significant mass dependence of the beam-normal single spin
asymmetry is observed in the mass regime from C to Zr.Comment: Submitted for publication to Physics Letters
Sculpting oscillators with light within a nonlinear quantum fluid
Seeing macroscopic quantum states directly remains an elusive goal. Particles
with boson symmetry can condense into such quantum fluids producing rich
physical phenomena as well as proven potential for interferometric devices
[1-10]. However direct imaging of such quantum states is only fleetingly
possible in high-vacuum ultracold atomic condensates, and not in
superconductors. Recent condensation of solid state polariton quasiparticles,
built from mixing semiconductor excitons with microcavity photons, offers
monolithic devices capable of supporting room temperature quantum states
[11-14] that exhibit superfluid behaviour [15,16]. Here we use microcavities on
a semiconductor chip supporting two-dimensional polariton condensates to
directly visualise the formation of a spontaneously oscillating quantum fluid.
This system is created on the fly by injecting polaritons at two or more
spatially-separated pump spots. Although oscillating at tuneable THz-scale
frequencies, a simple optical microscope can be used to directly image their
stable archetypal quantum oscillator wavefunctions in real space. The
self-repulsion of polaritons provides a solid state quasiparticle that is so
nonlinear as to modify its own potential. Interference in time and space
reveals the condensate wavepackets arise from non-equilibrium solitons. Control
of such polariton condensate wavepackets demonstrates great potential for
integrated semiconductor-based condensate devices.Comment: accepted in Nature Physic
Connective tissue disease related interstitial lung diseases and idiopathic pulmonary fibrosis: provisional core sets of domains and instruments for use in clinical trials
Rationale Clinical trial design in interstitial lung diseases (ILDs) has been hampered by lack of consensus on appropriate outcome measures for reliably assessing treatment response. In the setting of connective tissue diseases (CTDs), some measures of ILD disease activity and severity may be confounded by non-pulmonary comorbidities. Methods The Connective Tissue Disease associated Interstitial Lung Disease (CTD-ILD) working group of Outcome Measures in Rheumatology—a non-profit international organisation dedicated to consensus methodology in identification of outcome measures—conducted a series of investigations which included a Delphi process including >248 ILD medical experts as well as patient focus groups culminating in a nominal group panel of ILD experts and patients. The goal was to define and develop a consensus on the status of outcome measure candidates for use in randomised controlled trials in CTD-ILD and idiopathic pulmonary fibrosis (IPF). Results A core set comprising specific measures in the domains of lung physiology, lung imaging, survival, dyspnoea, cough and health-related quality of life is proposed as appropriate for consideration for use in a hypothetical 1-year multicentre clinical trial for either CTD-ILD or IPF. As many widely used instruments were found to lack full validation, an agenda for future research is proposed. Conclusion Identification of consensus preliminary domains and instruments to measure them was attained and is a major advance anticipated to facilitate multicentre RCTs in the field
The Particular Case of China’s Private Sector and the Funding of Science, Technology and Innovation: A Hybrid Counter Model and Its Challenges
After three decades of socialist restructuring, before China could create a contemporary innovation system, it needed first and foremost to rebuild a market-oriented economic system with enterprises which would invest in domestic science. The Chinese corporate sector, after its reconstruction, also had a crucial role to play in the development of China’s innovation capacities. Like China’s economic system, however, creating a Western-style innovation system from scratch had its challenges: the government installed numerous measures between the business and science sectors to employ companies in research funding. However, Chinese strategies and institutions borrowed from the West were built on very specific frameworks shaped by traditional and socialist China. Therefore, strategy implementation appeared to repeatedly encounter the same obstacles. While progress is visible, it still lags behind the high expectations and targeted pressure from the Chinese State. Growing economic challenges also drove China's efforts to become even more innovative. Since the turn of the millennium, financial incentives have been pushed specifically for the promotion of STI by (private) enterprises. There are thus opposing power structures that China's central government attempts to keep under control. This contradictory situation raises basic questions on market forces and innovation systems in authoritarian frameworks. This paper discusses the question of whether the case of this hybrid status quo of private public relationship in Chinese STI is doomed to fail because of its fundamental contradictions to the conventional, hitherto dominant concepts of functioning innovation systems? Or whether it is precisely these previous approaches that are being called into question because of the empirically effective persistence of other approaches? This question will be explored on the basis of the Triple Helix model, as will the discussion whether the hybrid nature of the private and political sectors in China, due to their now dominant international role also calls into question other regional systems that have functioned according to previous patterns of private science funding
The Static and Dynamic Lattice Changes Induced by Hydrogen Adsorption on NiAl(110)
Static and dynamic changes induced by adsorption of atomic hydrogen on the
NiAl(110) lattice at 130 K have been examined as a function of adsorbate
coverage. Adsorbed hydrogen exists in three distinct phases. At low coverages
the hydrogen is itinerant because of quantum tunneling between sites and
exhibits no observable vibrational modes. Between 0.4 ML and 0.6 ML, substrate
mediated interactions produce an ordered superstructure with c(2x2) symmetry,
and at higher coverages, hydrogen exists as a disordered lattice gas. This
picture of how hydrogen interacts with NiAl(110) is developed from our data and
compared to current theoretical predictions.Comment: 36 pages, including 12 figures, 2 tables and 58 reference
- …
