1,365 research outputs found
Achieving Green and Healthy Homes and Communities in America
In the Fall of 2010, the National Coalition to End Childhood Lead Poisioning contracted with the National Academy to develop and execute an online dialogue that would examine ways to increase the health, safety, and energy efficiency of low- to moderate-income homes. Since 1999, the National Coalition had worked to improve low- to moderate-income housing through the support and execution of home interventions that addressed multiple issues within a home at one time; an approach that often did not align with other traditional, single-issue housing assistance programs. By 2010, the National Coalition had taken on the leadership of the Green and Healthy Homes Initiative, a public-private partnership focused on integrating funding streams to improve low- to middle-income homes across the country.With plans to expand the GHHI's operations, the National Coalition partnered with the National Academy to conduct the National Dialogue on Green and Healthy Homes, a collaborative online dailogue in which participants were asked to identify challenges to, and innovative practices for, improving the health, safety and energy-efficiency of low- to moderate- income homes. The Dialogue was live from November 4-November 22, 2010, and collected 100 hundred ideas and 362 comments from 320 registered users. Over the course of its two and a half week duration, the Dialogue received more than 2,500 visits from over 1,100 people in 48 states and territories. Key FindingsBy reviewing the feedback received in the Dialogue, the Panel was able to make a number of recommendations on how the green and healthy homes community of practice could increase the health, safety and energy efficiency of homes across the country. These recommendations included: Conduct an evaluation of current housing standards to determine if they meet the Nation's health, safety, and energy efficiency needs; Develop a tiered performance standard for healthy, safe and energy efficient homes; Group government funding streams to better align programs with the comprehensive intervention approach; Develop a long-term funding strategy to support efforts after Recovery Act funding ends; and Educate government decisionmakers and the public on the importance of developing green and healthy homes and communities, and the work that supports that development
A National Dialogue on Health Information Technology and Privacy
Increasingly, government leaders recognize that solving the complex problems facing America today will require more than simply keeping citizens informed. Meeting challenges like rising health care costs, climate change and energy independence requires increased level of collaboration. Traditionally, government agencies have operated in silos -- separated not only from citizens, but from each other, as well. Nevertheless, some have begun to reach across and outside of government to access the collective brainpower of organizations, stakeholders and individuals.The National Dialogue on Health Information Technology and Privacy was one such initiative. It was conceived by leaders in government who sought to demonstrate that it is not only possible, but beneficial and economical, to engage openly and broadly on an issue that is both national in scope and deeply relevant to the everyday lives of citizens. The results of this first-of-its-kind online event are captured in this report, together with important lessons learned along the way.This report served as a call to action. On his first full day in office, President Obama put government on notice that this new, more collaborative model can no longer be confined to the efforts of early adopters. He called upon every executive department and agency to "harness new technology" and make government "transparent, participatory, and collaborative." Government is quickly transitioning to a new generation of managers and leaders, for whom online collaboration is not a new frontier but a fact of everyday life. We owe it to them -- and the citizens we serve -- to recognize and embrace the myriad tools available to fulfill the promise of good government in the 21st Century.Key FindingsThe Panel recommended that the Administration give stakeholders the opportunity to further participate in the discussion of heath IT and privacy through broader outreach and by helping the public to understand the value of a person-centered view of healthcare information technology
Effects of non-linearities on magnetic field generation
Magnetic fields are present on all scales in the Universe. While we
understand the processes which amplify the fields fairly well, we do not have a
"natural" mechanism to generate the small initial seed fields. By using fully
relativistic cosmological perturbation theory and going beyond the usual
confines of linear theory we show analytically how magnetic fields are
generated. This is the first analytical calculation of the magnetic field at
second order, using gauge-invariant cosmological perturbation theory, and
including all the source terms. To this end, we have rederived the full set of
governing equations independently. Our results suggest that magnetic fields of
the order of G can be generated (although this depends on the small
scale cut-off of the integral), which is largely in agreement with previous
results that relied upon numerical calculations. These fields are likely too
small to act as the primordial seed fields for dynamo mechanisms.Comment: 21 pages; v2: minor changes, added references; v3: version accepted
for publication in JCA
Pure kinetic k-essence as the cosmic speed-up
In this paper, we consider three types of k-essence. These k-essence models
were presented in the parametric forms. The exact analytical solutions of the
corresponding equations of motion are found. It is shown that these k-essence
models for the presented solutions can give rise to cosmic acceleration.Comment: 10 pages, typos corrected, main results remain the same, minor
changes to match IJTP accepted versio
Infrared effects in inflationary correlation functions
In this article, I briefly review the status of infrared effects which occur
when using inflationary models to calculate initial conditions for a subsequent
hot, dense plasma phase. Three types of divergence have been identified in the
literature: secular, "time-dependent" logarithms, which grow with time spent
outside the horizon; "box-cutoff" logarithms, which encode a dependence on the
infrared cutoff when calculating in a finite-sized box; and "quantum"
logarithms, which depend on the ratio of a scale characterizing new physics to
the scale of whatever process is under consideration, and whose interpretation
is the same as conventional field theory. I review the calculations in which
these divergences appear, and discuss the methods which have been developed to
deal with them.Comment: Invited review for focus section of Classical & Quantum Gravity on
nonlinear and nongaussian perturbation theory. Some improvements compared to
version which will appear in CQG, especially in Sec. 2.3. 30 pages +
references
Averaging Robertson-Walker Cosmologies
The cosmological backreaction arises when one directly averages the Einstein
equations to recover an effective Robertson-Walker cosmology, rather than
assuming a background a priori. While usually discussed in the context of dark
energy, strictly speaking any cosmological model should be recovered from such
a procedure. We apply the Buchert averaging formalism to linear
Robertson-Walker universes containing matter, radiation and dark energy and
evaluate numerically the discrepancies between the assumed and the averaged
behaviour, finding the largest deviations for an Einstein-de Sitter universe,
increasing rapidly with Hubble rate to a 0.01% effect for h=0.701. For the LCDM
concordance model, the backreaction is of the order of Omega_eff~4x10^-6, with
those for dark energy models being within a factor of two or three. The impacts
at recombination are of the order of 10^-8 and those in deep radiation
domination asymptote to a constant value. While the effective equations of
state of the backreactions in Einstein-de Sitter, concordance and quintessence
models are generally dust-like, a backreaction with an equation of state
w_eff<-1/3 can be found for strongly phantom models.Comment: 18 pages, 11 figures, ReVTeX. Updated to version accepted by JCA
Effect of pre-cardiac and adult stages of Dirofilaria immitis in pulmonary disease of cats: CBC, bronchial lavage cytology, serology, radiographs, CT images, bronchial reactivity, and histopathology
AbstractA controlled, blind study was conducted to define the initial inflammatory response and lung damage associated with the death of precardiac stages of Dirofilaria immitis in cats as compared to adult heartworm infections and normal cats. Three groups of six cats each were used: UU: uninfected untreated controls; PreS I: infected with 100 D. immitis L3 by subcutaneous injection and treated topically with selamectin 32 and 2 days pre-infection and once monthly for 8 months); IU: infected with 100 D. immitis L3 and left untreated. Peripheral blood, serum, bronchial lavage, and thoracic radiographic images were collected from all cats on Days 0, 70, 110, 168, and 240. CT images were acquired on Days 0, 110, and 240. Cats were euthanized, and necropsies were conducted on Day 240 to determine the presence of heartworms. Bronchial rings were collected for in vitro reactivity. Lung, heart, brain, kidney, and liver tissues were collected for histopathology. Results were compared for changes within each group. Pearson and Spearman correlations were performed for association between histologic, radiographic, serologic, hematologic and bronchoalveolar lavage (BAL) results. Infected cats treated with selamectin did not develop radiographically evident changes throughout the study, were heartworm antibody negative, and were free of adult heartworms and worm fragments at necropsy. Histologic lung scores and CT analysis were not significantly different between PreS I cats and UU controls. Subtle alveolar myofibrosis was noted in isolated areas of several PreS I cats and an eosinophilic BAL cytology was noted on Days 75 and 120. Bronchial ring reactivity was blunted in IU cats but was normal in PreS I and UU cats. The IU cats became antibody positive, and five cats developed adult heartworms. All cats with heartworms were antigen positive at one time point; but one cat was antibody positive, antigen negative, with viable adult females at necropsy. The CT revealed early involvement of all pulmonary arteries and a random pattern of parenchymal disease with severe lesions immediately adjacent to normal areas. Analysis of CT 3D reconstruction and Hounsfield units demonstrated lung disease consistent with restrictive pulmonary fibrosis with an interstitial infiltrate, absence of air trapping, and decrease in total lung volume in Group IU as compared to Groups UU and PreS I. The clinical implications of this study are that cats pretreated with selamectin 1 month before D. immitis L3 infection did not become serologically positive and did not develop pulmonary arterial hypertrophy and myofibrosis
Consistent perturbations in an imperfect fluid
We present a new prescription for analysing cosmological perturbations in a
more-general class of scalar-field dark-energy models where the energy-momentum
tensor has an imperfect-fluid form. This class includes Brans-Dicke models,
f(R) gravity, theories with kinetic gravity braiding and generalised galileons.
We employ the intuitive language of fluids, allowing us to explicitly maintain
a dependence on physical and potentially measurable properties. We demonstrate
that hydrodynamics is not always a valid description for describing
cosmological perturbations in general scalar-field theories and present a
consistent alternative that nonetheless utilises the fluid language. We apply
this approach explicitly to a worked example: k-essence non-minimally coupled
to gravity. This is the simplest case which captures the essential new features
of these imperfect-fluid models. We demonstrate the generic existence of a new
scale separating regimes where the fluid is perfect and imperfect. We obtain
the equations for the evolution of dark-energy density perturbations in both
these regimes. The model also features two other known scales: the Compton
scale related to the breaking of shift symmetry and the Jeans scale which we
show is determined by the speed of propagation of small scalar-field
perturbations, i.e. causality, as opposed to the frequently used definition of
the ratio of the pressure and energy-density perturbations.Comment: 40 pages plus appendices. v2 reflects version accepted for
publication in JCAP (new summary of notation, extra commentary on choice of
gauge and frame, extra references to literature
- …
