2,022 research outputs found
On reductions of soliton solutions of multi-component NLS models and spinor Bose-Einstein condensates
We consider a class of multicomponent nonlinear Schrodinger equations (MNLS)
related to the symmetric BD.I-type symmetric spaces. As important particular
case of these MNLS we obtain the Kulish-Sklyanin model. Some new reductions and
their effects on the soliton solutions are obtained by proper modifying the
Zakahrov-Shabat dressing method.Comment: AIP AMiTaNS'09 Proceedings
Weak electricity of the Nucleon in the Chiral Quark-Soliton Model
The induced pseudotensor constant (weak electricity) of the nucleon is
calculated in the framework of the chiral quark soliton model. This quantity
originates from the G-parity violation and hence is proportional to .
We obtain for a value of .Comment: The final version. Accepted for publication in Phys. Rev.
Conformational effects on the Circular Dichroism of Human Carbonic Anhydrase II: a multilevel computational study
Circular Dichroism (CD) spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII), with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory) were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD) could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions
Self-Consistent Pushing and Cranking Corrections to the Meson Fields of the Chiral Quark-Loop Soliton
We study translational and spin-isospin symmetry restoration for the
two-flavor chiral quark-loop soliton. Instead of a static soliton at rest we
consider a boosted and rotating hedgehog soliton. Corrected classical meson
fields are obtained by minimizing a corrected energy functional which has been
derived by semi-classical methods ('variation after projection'). We evaluate
corrected meson fields in the region 300 MeV \le M \le 600 MeV of constituent
quark masses M and compare them with the uncorrected fields. We study the
effect of the corrections on various expectation values of nuclear observables
such as the root-mean square radius, the axial-vector coupling constant,
magnetic moments and the delta-nucleon mass splitting.Comment: 19 pages, LaTeX, 7 postscript figures included using 'psfig.sty', to
appear in Int.J.Mod.Phys.
Chiral Symmetry and the Nucleon Structure Functions
The isospin asymmetry of the sea quark distribution as well as the
unexpectedly small quark spin fraction of the nucleon are two outstanding
discoveries recently made in the physics of deep-inelastic structure functions.
We evaluate here the corresponding quark distribution functions within the
framework of the chiral quark soliton model, which is an effective quark model
of baryons maximally incorporating the most important feature of low energy
QCD, i.e. the chiral symmetry and its spontaneous breakdown. It is shown that
the model can explain qualitative features of the above-mentioned nucleon
structure functions within a single framework, thereby disclosing the
importance of chiral symmetry in the physics of high energy deep-inelastic
scatterings.Comment: 20pages, LaTex, 5 Postscript figures A numerical error of the
original version was corrected. The discussion on the regularization
dependence of distribution functions has been added. A comparison with the
low energy-scale parametrization of Gloeck, Reya and Vogt has been mad
Magnetic moments of the SU(3) decuplet baryons in the chiral quark-soliton model
Magnetic moments of baryons are studied within the chiral quark soliton model
with special emphasis on the decuplet of baryons. The model is used to identify
all symmetry breaking terms proportional to . Sum rules for the
magnetic moments are derived. A ``model-independent'' analysis of the symmetry
breaking terms is performed and finally model calculations are presented, which
show the importance of the rotational corrections for cranking of
the soliton.Comment: 22 pages, RevTex. The final version accepted for publication in Phys.
Rev.
Do we expect light flavor sea-quark asymmetry also for the spin-dependent distribution functions of the nucleon?
After taking account of the scale dependence by means of the standard DGLAP
evolution equation, the theoretical predictions of the chiral quark soliton
model for the unpolarized and longitudinally polarized structure functions of
the nucleon are compared with the recent high energy data. The theory is shown
to explain all the qualitative features of the experiments, including the NMC
data for , , the Hermes and NuSea
data for , the EMC and SMC data for ,
and . Among others, flavor asymmetry of the longitudinally
polarized sea-quark distributions is a remarkable prediction of this model,
i.e., it predicts that with a sizable negative coefficient
(and ) in qualitative consistency with the recent
semi-phenomenological analysis by Morii and Yamanishi.Comment: 14pages, including 5 eps_figures with epsbox.sty, late
(1+1)-dimensional Baryons from the SU(N) Color-Flavor Transformation
The color-flavor transformation, an identity that connects two integrals,
each of which is over one of a dual pair of Lie groups acting in the fermionic
Fock space, is extended to the case of the special unitary group. Using this
extension, a toy model of lattice QCD is studied: N_f species of spinless
fermions interacting with strongly coupled SU(N_c) lattice gauge fields in 1+1
dimensions. The color-flavor transformed theory is expressed in terms of gauge
singlets, the meson fields, organized into sectors distinguished by the
distribution of baryonic flux. A comprehensive analytical and numerical search
is made for saddle-point configurations of the meson fields, with various
topological charges, in the vacuum and single-baryon sectors. Two definitions
of the static baryon on the square lattice, straight and zigzag, are
investigated. The masses of the baryonic states are estimated using the
saddle-point approximation for large N_c.Comment: LateX, 53 pages, 13 figure
A NuRD Complex from Xenopus laevis Eggs Is Essential for DNA Replication during Early Embryogenesis.
DNA replication in the embryo of Xenopus laevis changes dramatically at the mid-blastula transition (MBT), with Y RNA-independent random initiation switching to Y RNA-dependent initiation at specific origins. Here, we identify xNuRD, an MTA2-containing assemblage of the nucleosome remodeling and histone deacetylation complex NuRD, as an essential factor in pre-MBT Xenopus embryos that overcomes a functional requirement for Y RNAs during DNA replication. Human NuRD complexes have a different subunit composition than xNuRD and do not support Y RNA-independent initiation of DNA replication. Blocking or immunodepletion of xNuRD inhibits DNA replication initiation in isolated nuclei in vitro and causes inhibition of DNA synthesis, developmental delay, and embryonic lethality in early embryos. xNuRD activity declines after the MBT, coinciding with dissociation of the complex and emergence of Y RNA-dependent initiation. Our data thus reveal an essential role for a NuRD complex as a DNA replication factor during early Xenopus development
Isovector unpolarized quark distribution in the nucleon in the large-N_c limit
We calculate the isovector (flavor-nonsinglet) unpolarized quark- and
antiquark distributions in the nucleon at a low normalization point in the
large-N_c limit. The nucleon is described as a soliton of the effective chiral
theory. The isovector distribution appears in the next-to-leading order of the
1/N_c-expansion. Numerical results for the quark- and antiquark distributions
compare well with the parametrizations of the data at a low normalization
point. This large-N_c approach gives a flavor asymmetry of the antiquark
distribution (violation of the Gottfried sum rule) in good agreement with the
measurements.Comment: 31 pages, LaTeX, 1 table, 4 figures included using eps
- …
