2,530 research outputs found

    Angiopoietin-like 4 based therapeutics for proteinuria and kidney disease

    Get PDF
    Current drugs used to treat proteinuric disorders of the kidney have been borrowed from other branches of medicine, and are only partially effective. The discovery of a central, mechanistic role played by two different forms of the secreted glycoprotein angiopoietin-like 4 (Angptl4) in human and experimental glomerular disease has opened new treatment avenues. Localized upregulation of a hyposialylated form (lacks sialic acid residues) of Angptl4 secreted by podocytes induces the cardinal morphological and clinical manifestations of human minimal change disease, and is also being increasingly recognized as a significant contributor toward proteinuria in experimental diabetic nephropathy. Oral treatment with low doses of N-acetyl-D-mannosamine, a naturally occurring precursor of sialic acid, improves sialylation of Angptl4 in vivo, and reduces proteinuria by over 40%. By contrast, a sialylated circulating form of Angptl4, mostly secreted from skeletal muscle, heart and adipose tissue in all major primary glomerular diseases, reduces proteinuria while also causing hypertriglyceridemia. Intravenous administration of recombinant human Angptl4 mutated to avoid hypertriglyceridemia and cleavage has remarkable efficacy in reducing proteinuria by as much as 65% for 2 weeks after a single low dose. Both interventions are mechanistically relevant, utilize naturally occurring pathways, and represent new generation therapeutic agents for chronic kidney disease related to glomerular disorders

    Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy.

    Get PDF
    Current cell-free DNA (cfDNA) next generation sequencing (NGS) precision oncology workflows are typically limited to targeted and/or disease-specific applications. In advanced cancer, disease burden and cfDNA tumor content are often elevated, yielding unique precision oncology opportunities. We sought to demonstrate the utility of a pan-cancer, rapid, inexpensive, whole genome NGS of cfDNA approach (PRINCe) as a precision oncology screening strategy via ultra-low coverage (~0.01x) tumor content determination through genome-wide copy number alteration (CNA) profiling. We applied PRINCe to a retrospective cohort of 124 cfDNA samples from 100 patients with advanced cancers, including 76 men with metastatic castration-resistant prostate cancer (mCRPC), enabling cfDNA tumor content approximation and actionable focal CNA detection, while facilitating concordance analyses between cfDNA and tissue-based NGS profiles and assessment of cfDNA alteration associations with mCRPC treatment outcomes. Therapeutically relevant focal CNAs were present in 42 (34%) cfDNA samples, including 36 of 93 (39%) mCRPC patient samples harboring AR amplification. PRINCe identified pre-treatment cfDNA CNA profiles facilitating disease monitoring. Combining PRINCe with routine targeted NGS of cfDNA enabled mutation and CNA assessment with coverages tuned to cfDNA tumor content. In mCRPC, genome-wide PRINCe cfDNA and matched tissue CNA profiles showed high concordance (median Pearson correlation = 0.87), and PRINCe detectable AR amplifications predicted reduced time on therapy, independent of therapy type (Kaplan-Meier log-rank test, chi-square = 24.9, p < 0.0001). Our screening approach enables robust, broadly applicable cfDNA-based precision oncology for patients with advanced cancer through scalable identification of therapeutically relevant CNAs and pre-/post-treatment genomic profiles, enabling cfDNA- or tissue-based precision oncology workflow optimization

    Iron Deposition following Chronic Myocardial Infarction as a Substrate for Cardiac Electrical Anomalies: Initial Findings in a Canine Model

    Get PDF
    Purpose: Iron deposition has been shown to occur following myocardial infarction (MI). We investigated whether such focal iron deposition within chronic MI lead to electrical anomalies. Methods: Two groups of dogs (ex-vivo (n = 12) and in-vivo (n = 10)) were studied at 16 weeks post MI. Hearts of animals from ex-vivo group were explanted and sectioned into infarcted and non-infarcted segments. Impedance spectroscopy was used to derive electrical permittivity () and conductivity (). Mass spectrometry was used to classify and characterize tissue sections with (IRON+) and without (IRON-) iron. Animals from in-vivo group underwent cardiac magnetic resonance imaging (CMR) for estimation of scar volume (late-gadolinium enhancement, LGE) and iron deposition (T2*) relative to left-ventricular volume. 24-hour electrocardiogram recordings were obtained and used to examine Heart Rate (HR), QT interval (QT), QT corrected for HR (QTc) and QTc dispersion (QTcd). In a fraction of these animals (n = 5), ultra-high resolution electroanatomical mapping (EAM) was performed, co-registered with LGE and T2* CMR and were used to characterize the spatial locations of isolated late potentials (ILPs). Results: Compared to IRON- sections, IRON+ sections had higher, but no difference in. A linear relationship was found between iron content and (p1.5%)) with similar scar volumes (7.28%±1.02% (Iron (1.5%)), p = 0.51) but markedly different iron volumes (1.12%±0.64% (Iron (1.5%)), p = 0.02), QT and QTc were elevated and QTcd was decreased in the group with the higher iron volume during the day, night and 24-hour period (p<0.05). EAMs co-registered with CMR images showed a greater tendency for ILPs to emerge from scar regions with iron versus without iron. Conclusion: The electrical behavior of infarcted hearts with iron appears to be different from those without iron. Iron within infarcted zones may evolve as an arrhythmogenic substrate in the post MI period

    What is the real impact of acute kidney injury?

    Get PDF
    Background: Acute kidney injury (AKI) is a common clinical problem. Studies have documented the incidence of AKI in a variety of populations but to date we do not believe the real incidence of AKI has been accurately documented in a district general hospital setting. The aim here was to describe the detected incidence of AKI in a typical general hospital setting in an unselected population, and describe associated short and long-term outcomes. Methods: A retrospective observational database study from secondary care in East Kent (adult catchment population of 582,300). All adult patients (18 years or over) admitted between 1st February 2009 and 31st July 2009, were included. Patients receiving chronic renal replacement therapy (RRT), maternity and day case admissions were excluded. AKI was defined by the acute kidney injury network (AKIN) criteria. A time dependent risk analysis with logistic regression and Cox regression was used for the analysis of in-hospital mortality and survival. Results: The incidence of AKI in the 6 month period was 15,325 pmp/yr (adults) (69% AKIN1, 18% AKIN2 and 13% AKIN3). In-hospital mortality, length of stay and ITU utilisation all increased with severity of AKI. Patients with AKI had an increase in care on discharge and an increase in hospital readmission within 30 days. Conclusions: This data comes closer to the real incidence and outcomes of AKI managed in-hospital than any study published in the literature to date. Fifteen percent of all admissions sustained an episode of AKI with increased subsequent short and long term morbidity and mortality, even in those with AKIN1. This confers an increased burden and cost to the healthcare economy, which can now be quantified. These results will furnish a baseline for quality improvement projects aimed at early identification, improved management, and where possible prevention, of AKI

    Cardiac structural and functional profile of patients with delayed QRS transition zone and sudden cardiac death

    Get PDF
    Delayed QRS transition zone in the precordial leads of the 12-lead electrocardiogram (ECG) has been recently associated with increased risk of sudden cardiac death (SCD), but the underlying mechanisms are unknown. We correlated echocardiographic findings with ECG and clinical characteristics to investigate how alterations in cardiac structure and function contribute to this risk marker. From the ongoing population-based Oregon Sudden Unexpected Death Study (catchment population similar to 1 million), SCD cases with prior ECG available (n = 627) were compared with controls (n = 801). Subjects with delayed transition at V-5 or later were identified, and clinical and echocardiographic patterns associated with delayed transition were analysed. Delayed transition was present in 31% of the SCD cases and 17% of the controls. These subjects were older and more likely to have cardiovascular risk factors and history of myocardial infarction. Delayed transition was associated with increased left ventricular (LV) mass (122.7 +/- 40.2 vs. 102.9 +/- 33.7 g/m(2); P <0.001), larger LV diameter (53.3 +/- 10.4 vs. 49.2 +/- 8.0 mm; P <0.001), and lower LV ejection fraction (LVEF) (46.4 +/- 15.7 vs. 55.6 +/- 12.5%; P <0.001). In multivariate analysis, delayed transition was independently associated with myocardial infarction, reduced LVEF, and LV hypertrophy. The association between delayed transition and SCD was independent of the LVEF (OR 1.57; 95% CI 1.04-2.38; P = 0.032). The underpinnings of delayed QRS transition zone extend beyond previous myocardial infarction and reduced LVEF. Since the association with sudden death is independent of these factors, this novel marker of myocardial electrical remodelling should be explored as a potential risk predictor of SCD.Peer reviewe

    Rapidity distribution as a probe for elliptical flow at intermediate energies

    Full text link
    Interplay between the spectator and participant matter in heavy-ion collisions is investigated within isospin dependent quantum molecular dynamics (IQMD) model in term of rapidity distribution of light charged particles. The effect of different types and size rapidity distributions is studied in elliptical flow. The elliptical flow patterns show important role of the nearby spectator matter on the participant zone. This role is further explained on the basis of passing time of the spectator and expansion time of the participant zone. The transition from the in-plane to out-of-plane is observed only when the mid-rapidity region is included in the rapidity bin, otherwise no transition occurs. The transition energy is found to be highly sensitive towards the size of the rapidity bin, while weakly on the type of the rapidity distribution. The theoretical results are also compared with the experimental findings and are found in good agreement.Comment: 8 figure

    Artificial Neural Network Modelling for Optimizing the Optical Parameters of Plasmonic Paired Nanostructures

    Get PDF
    The Artificial Neural Network (ANN) has become an attractive approach in Machine Learning (ML) to analyze a complex data-driven problem. Due to its time efficient findings, it has became popular in many scientific fields such as physics, optics, and material science. This paper presents a new approach to design and optimize the electromagnetic plasmonic nanostructures using a computationally efficient method based on the ANN. In this work, the nanostructures have been simulated by using a Finite Element Method (FEM), then Artificial Intelligence (AI) is used for making predictions of associated sensitivity (S), Full Width Half Maximum (FWHM), Figure of Merit (FOM), and Plasmonic Wavelength (PW) for different paired nanostructures. At first, the computational model is developed by using a Finite Element Method (FEM) to prepare the dataset. The input parameters were considered as the Major axis, a, the Minor axis, b, and the separation gap, g, which have been used to calculate the corresponding sensitivity (nm/RIU), FWHM (nm), FOM, and plasmonic wavelength (nm) to prepare the dataset. Secondly, the neural network has been designed where the number of hidden layers and neurons were optimized as part of a comprehensive analysis to improve the efficiency of ML model. After successfully optimizing the neural network, this model is used to make predictions for specific inputs and its corresponding outputs. This article also compares the error between the predicted and simulated results. This approach outperforms the direct numerical simulation methods for predicting output for various input device parameters
    corecore