588 research outputs found

    Effects of static charging and exfoliation of layered crystals

    Get PDF
    Using first-principle plane wave method we investigate the effects of static charging on structural, elastic, electronic and magnetic properties of suspended, single layer graphene, graphane, fluorographene, BN and MoS2 in honeycomb structures. The limitations of periodic boundary conditions in the treatment of charged layers are clarified. Upon positive charging the band gaps between the conduction and valence bands increase, but the single layer materials become metallic owing to the Fermi level dipping below the maximum of valence band. Moreover, their bond lengths increase and their in-plane stiffness decreases. As a result, phonons are softened and frequencies of Raman active modes are lowered. High level of charging leads to instability. We showed that wide band gap BN and MoS2 slabs are metallized as a result of electron removal and their outermost layers are exfoliated once the charging exceeds a threshold value.Comment: http://link.aps.org/doi/10.1103/PhysRevB.85.04512

    Domain formation on oxidized graphene

    Get PDF
    Using first-principles calculations within density functional theory we demonstrate that the adsorption of single oxygen atom results in significant electron transfer from graphene to oxygen. This strongly disturbs the charge landscape of the C-C bonds at the proximity. Additional oxygen atoms adsorbing to graphene prefer always the C-C bonds having highest charge density and consequently they have tendency to form domain structure. While oxygen adsorption to one side of graphene ends with significant buckling, the adsorption to both sides with similar domain pattern is favored. The binding energy displays an oscillatory variation and the band gap widens with increasing oxygen coverage. While a single oxygen atom migrates over the C-C bonds on graphene surface, a repulsive interaction prevents two oxygen adatoms from forming an oxygen molecule. Our first-principles study together with finite temperature ab-initio molecular dynamics calculations concludes that oxygen adatoms on graphene cannot desorb easily without influence of external agents.Comment: under revie

    Armchair nanoribbons of silicon and germanium honeycomb structures

    Get PDF
    We present a first-principles study of bare and hydrogen passivated armchair nanoribbons of the puckered single layer honeycomb structures of silicon and germanium. Our study includes optimization of atomic structure, stability analysis based on the calculation of phonon dispersions, electronic structure and the variation of band gap with the width of the ribbon. The band gaps of silicon and germanium nanoribbons exhibit family behavior similar to those of graphene nanoribbons. The edges of bare nanoribbons are sharply reconstructed, which can be eliminated by the hydrogen termination of dangling bonds at the edges. Periodic modulation of the nanoribbon width results in a superlattice structure which can act as a multiple quantum wells. Specific electronic states are confined in these wells. Confinement trends are qualitatively explained by including the effects of the interface. In order to investigate wide and long superlattice structures we also performed empirical tight binding calculations with parameters determined from \textit{ab initio} calculations.Comment: please find the published version in http://link.aps.org/doi/10.1103/PhysRevB.81.19512

    Size dependence in the stabilities and electronic properties of \alpha -graphyne and its BN analogue

    Get PDF
    We predict the stabilities of \alpha-graphynes and their boron nitride analogues(\alpha-BNyne), which are considered as competitors of graphene and two-dimensional hexagonal BN. Based on first-principles plane wave method, we investigated the stability and structural transformations of these materials at different sizes using phonon dispersion calculations and ab-initio finite temperature, molecular dynamics simulations. Depending on the number of additional atoms in the edges between the corner atoms of the hexagons, n, both \alpha-graphyne(n) and \alpha-BNyne(n) are stable for even n, but unstable for odd n. \alpha-graphyne(3) undergoes a structural transformation, where the symmetry of hexagons is broken. We present the structure optimized cohesive energies, electronic, magnetic and mechanical properties of stable structures. Our calculations reveal the existence of Dirac cones in the electronic structures of \alpha-graphynes of all sizes, where the Fermi velocities decrease with increasing n. The electronic and magnetic properties of these structures are modified by hydrogenation. A single hydrogen vacancy renders a magnetic moment of one Bohr magneton. We finally present the properties of the bilayer \alpha-graphyne and \alpha-BNyne structures. We expect that these layered materials can function as frameworks in various chemical and electronic applications.Comment: Published version in The Journal of Physical Chemistr

    The response of mechanical and electronic properties of graphane to the elastic strain

    Get PDF
    Based on first-principles calculations, we resent a method to reveal the elastic properties of recently synthesized monolayer hydrocarbon, graphane. The in-plane stiffness and Poisson's ratio values are found to be smaller than those of graphene, and its yielding strain decreases in the presence of various vacancy defects and also at high ambient temperature. We also found that the band gap can be strongly modified by applied strain in the elastic range.Comment: accepted version at: http://link.aip.org/link/?APL/96/09191

    Self-assembly mechanisms of short atomic chains on single layer graphene and boron nitride

    Get PDF
    Nucleation and growth mechanisms of short chains of carbon atoms on single-layer, hexagonal boron nitride (h-BN), and short BN chains on graphene are investigated using first-principles plane wave calculations. Our analysis starts with the adsorption of a single carbon ad-atom and examines its migrations. Once a C2_2 nucleates on h-BN, the insertion of each additional carbon at its close proximity causes a short segment of carbon atomic chain to grow by one atom at at a time in a quaint way: The existing chain leaves its initial position and subsequently is attached from its bottom end to the top of the carbon ad-atom. The electronic, magnetic and structural properties of these chains vertically adsorbed to h-BN depend on the number of carbon atoms in the chain, such that they exhibit an even-odd disparity. An individual carbon chain can also modify the electronic structure with localized states in the wide band gap of h-BN. As a reverse situation we examined the growth of short BN atomic chains on graphene, which attribute diverse properties depending on whether B or N is the atom bound to the substrate. These results together with ab-initio molecular dynamics simulations of the growth process reveal the interesting self-assembly behavior of the grown chains. Furthermore, we find that these atomic chains enhance the chemical activity of h-BN and graphene sheets by creating active sites for the bonding of various ad-atoms and can act as pillars between two and multiple sheets of these honeycomb structures leaving wider spacing between them to achieve high capacity storage of specific molecules.Comment: Accepted for Physical Review

    Nanoscale Dielectric Capacitors Composed of Graphene and Boron Nitride Layers: A First Principles Study of High-Capacitance at Nanoscale

    Get PDF
    We investigate a nanoscale dielectric capacitor model consisting of two-dimensional, hexagonal h-BN layers placed between two commensurate and metallic graphene layers using self-consistent field density functional theory. The separation of equal amounts of electric charge of different sign in different graphene layers is achieved by applying electric field perpendicular to the layers. The stored charge, energy, and the electric potential difference generated between the metallic layers are calculated from the first-principles for the relaxed structures. Predicted high-capacitance values exhibit the characteristics of supercapacitors. The capacitive behavior of the present nanoscale model is compared with that of the classical Helmholtz model, which reveals crucial quantum size effects at small separations, which in turn recede as the separation between metallic planes increases.Comment: Published version in The Journal of Physical Chemistry: http://pubs.acs.org/doi/abs/10.1021/jp403706

    Superlubricity through graphene multilayers between Ni(111) surfaces

    Get PDF
    A single graphene layer placed between two parallel Ni(111) surfaces screens the strong attractive force and results in a significant reduction of adhesion and sliding friction. When two graphene layers are inserted, each graphene is attached to one of the metal surfaces with a significant binding and reduces the adhesion further. In the sliding motion of these surfaces the transition from stick-slip to continuous sliding is attained, whereby non-equilibrium phonon generation through sudden processes is suppressed. The adhesion and corrugation strength continues to decrease upon insertion of the third graphene layer and eventually saturates at a constant value with increasing number of graphene layers. In the absence of Ni surfaces, the corrugation strength of multilayered graphene is relatively higher and practically independent of the number of layers. Present first-principles calculations reveal the superlubricant feature of graphene layers placed between pseudomorphic Ni(111) surfaces, which is achieved through the coupling of Ni-3d and graphene-π\pi orbitals. The effect of graphene layers inserted between a pair of parallel Cu(111) and Al(111) surfaces are also discussed. The treatment of sliding friction under the constant loading force, by taking into account the deformations corresponding to any relative positions of sliding slabs, is the unique feature of our study.Comment: Accepted paper for Physical Review

    A systematic ab-initio study of curvature effects in carbon nanotubes

    Full text link
    We investigate curvature effects on geometric parameters, energetics and electronic structure of zigzag nanotubes with fully optimized geometries from first-principle calculations. The calculated curvature energies, which are inversely proportional to the square of radius, are in good agreement with the classical elasticity theory. The variation of the band gap with radius is found to differ from simple rules based on the zone folded graphene bands. Large discrepancies between tight binding and first principles calculations of the band gap values of small nanotubes are discussed in detail.Comment: To be appear in Phys. Rev. B, Apr 15 (2002
    corecore