12,724 research outputs found
Cosmic Sculpture: A new way to visualise the Cosmic Microwave Background
3D printing presents an attractive alternative to visual representation of
physical datasets such as astronomical images that can be used for research,
outreach or teaching purposes, and is especially relevant to people with a
visual disability. We here report the use of 3D printing technology to produce
a representation of the all-sky Cosmic Microwave Background (CMB) intensity
anisotropy maps produced by the Planck mission. The success of this work in
representing key features of the CMB is discussed as is the potential of this
approach for representing other astrophysical data sets. 3D printing such
datasets represents a highly complementary approach to the usual 2D projections
used in teaching and outreach work, and can also form the basis of
undergraduate projects. The CAD files used to produce the models discussed in
this paper are made available.Comment: Accepted for publication in the European Journal of Physic
Preasymptotic multiscaling in the phase-ordering dynamics of the kinetic Ising model
The evolution of the structure factor is studied during the phase-ordering
dynamics of the kinetic Ising model with conserved order parameter. A
preasymptotic multiscaling regime is found as in the solution of the
Cahn-Hilliard-Cook equation, revealing that the late stage of phase-ordering is
always approached through a crossover from multiscaling to standard scaling,
independently from the nature of the microscopic dynamics.Comment: 11 pages, 3 figures, to be published in Europhys. Let
Estimating the Payoffs of Temperature-based Weather Derivatives
Temperature-based weather derivatives are written on an index which is normally defined to be a nonlinear function of average daily temperatures. Recent empirical work has demonstrated the usefulness of simple time-series models of temperature for estimating the payoffs to these instruments. This paper argues that a more direct and parsimonious approach is to model the time-series behaviour of the index itself, provided a sufficiently rich supply of historical data is available. A data set comprising average daily temperature spanning over a hundred years for four Australian cities is assembled. The data is then used to compare the actual payoffs of temperature-based European call options with the expected payoffs computed from historical temperature records and two time-series approaches. It is concluded that expected payoffs computed directly from historical records perform poorly by comparison with the expected payoffs generated by means of competing time-series models. It is also found that modeling the relevant temperature index directly is superior to modeling average daily temperatures.Temperature, Weather Derivatives, Cooling Degree Days, Time-series Models.
Candidate High Redshift and Primeval Galaxies in Hubble Deep Field South
We present the results of colour selection of candidate high redshift
galaxies in Hubble Deep Field South (HDF-S) using the Lyman dropout scheme. The
HDF-S data we discuss were taken in a number of different filters extending
from the near--UV (F300W) to the infrared (F222M) in two different fields. This
allows us to select candidates with redshifts from z~3 to z~12. We find 15
candidate z~3 objects (F300W dropouts), 1 candidate z~4 object (F450W dropout)
and 16 candidate z5 objects (F606W dropouts) in the ~ 4.7 arcmin^2 WFPC-2
field, 4 candidate z~6 (optical dropouts) and 1 candidate z~8 (F110W dropout)
in the 0.84 arcmin^2 NICMOS-3 field. No F160W dropouts are found (z~12). We
compare our selection technique with existing data for HDF-North and discuss
alternative interpretations of the objects. We conclude that there are a number
of lower redshift interlopers in the selections, including one previously
identified object (Treu et al. 1998), and reject those objects most likely to
be foreground contaminants. Even after this we conclude that the F606W dropout
list is likely to still contain substantial foreground contamination. The lack
of candidate very high redshift UV-luminous galaxies supports earlier
conclusions by Lanzetta et al. (1998). We discuss the morphologies and
luminosity functions of the high redshift objects, and their cosmological
implications.Comment: Accepted for publication in MNRA
Components required for in vitro cleavage and polyadenylation of eukaryotic mRNA
We have studied in vitro cleavage/polyadenylation of precursor RNA containing herpes simplex virus type 2 poly A site sequences and have analysed four RNA/protein complexes which form during in vitro reactions. Two complexes, A and B, form extremely rapidly and are then progressively replaced by a third complex, C which is produced following cleavage and polyadenylation of precursor RNA. Substitution of ATP with cordycepin triphosphate prevents polyadenylation and the formation of complex C however a fourth complex, D, results which contains cleaved RNA. A precursor RNA lacking GU-rich downstream sequences required for efficient cleavage/ polyadenylation fails to form complex B and produces a markedly reduced amount of complex A. As these GU-rich sequences are required for efficient cleavage, this establishes a relationship between complex B formation and cleavage/polyadenylation of precursor RNA in vitro. The components required for in vitro RNA processing have been separated by fractionation of the nuclear extract on Q-Sepharose and Biorex 70 columns. A Q-Sepharose fraction forms complex B but does not process RNA. Addition of a Biorex 70 fraction restores cleavage activity at the poly A site but this fraction does not appear to contribute to complex formation. Moreover, in the absence of polyethylene glycol, precursor RNA is not cleaved and polyadenylated, however, complexes A and B readily form. Thus, while complex B is necessary for in vitro cleavage and polyadenylation, it may not contain all the components required for this processing
Chandra Observations of Extended X-ray Emission in Arp 220
We resolve the extended X-ray emission from the prototypical ultraluminous
infrared galaxy Arp 220. Extended, faint edge-brightened, soft X-ray lobes
outside the optical galaxy are observed to a distance of 10 to 15 kpc on each
side of the nuclear region. Bright plumes inside the optical isophotes coincide
with the optical line emission and extend 11 kpc from end to end across the
nucleus. The data for the plumes cannot be fit by a single temperature plasma,
and display a range of temperatures from 0.2 to 1 keV. The plumes emerge from
bright, diffuse circumnuclear emission in the inner 3 kpc centered on the
Halpha peak, which is displaced from the radio nuclei. There is a close
morphological correspondence between the Halpha and soft X-ray emission on all
spatial scales. We interpret the plumes as a starburst-driven superwind, and
discuss two interpretations of the emission from the lobes in the context of
simulations of the merger dynamics of Arp 220.Comment: Accepted for publication in ApJ; see also astro-ph/0208477 (Paper 1
Discovery of distant high luminosity infrared galaxies
We have developed a method for selecting the most luminous galaxies detected
by IRAS based on their extreme values of R, the ratio of 60 micron and B-band
luminosity. These objects have optical counterparts that are close to or below
the limits of Schmidt surveys. We have tested our method on a 1079 deg^2 region
of sky, where we have selected a sample of IRAS sources with 60 micron flux
densities greater than 0.2 Jy, corresponding to a redshift limit z~1 for
objects with far-IR luminosities of 10^{13} L_sun. Optical identifications for
these were obtained from the UK Schmidt Telescope plates, using the likelihood
ratio method. Optical spectroscopy has been carried out to reliably identify
and measure the redshifts of six objects with very faint optical counterparts,
which are the only objects with R>100 in the sample. One object is a
hyperluminous infrared galaxy (HyLIG) at z=0.834. Of the remaining, fainter
objects, five are ultraluminous infrared galaxies (ULIGs) with a mean redshift
of 0.45, higher than the highest known redshift of any non-hyperluminous ULIG
prior to this study. High excitation lines reveal the presence of an active
nucleus in the HyLIG, just as in the other known infrared-selected HyLIGs. In
contrast, no high excitation lines are found in the non-hyperluminous ULIGs. We
discuss the implications of our results for the number density of HyLIGs at z<1
and for the evolution of the infrared galaxy population out to this redshift,
and show that substantial evolution is indicated. Our selection method is
robust against the presence of gravitational lensing if the optical and
infrared magnification factors are similar, and we suggest a way of using it to
select candidate gravitationally lensed infrared galaxies.Comment: 6 pages, accepted for publication in A&
- …
