5,712 research outputs found
Three-level mixing and dark states in transport through quantum dots
We consider theoretically the transport through the double quantum dot
structure of the recent experiment of C. Payette {\it et al.} [Phys. Rev. Lett.
{\bf 102}, 026808 (2009)] and calculate stationary current and shotnoise.
Three-level mixing gives rise to a pronounced current suppression effect, the
character of which charges markedly with bias direction. We discuss these
results in connexion with the dark states of coherent population trapping in
quantum dots.Comment: 6 pages, 5 fig
Modelling the spinning dust emission from LDN 1780
We study the anomalous microwave emission (AME) in the Lynds Dark Nebula
(LDN) 1780 on two angular scales. Using available ancillary data at an angular
resolution of 1 degree, we construct an SED between 0.408 GHz to 2997 GHz. We
show that there is a significant amount of AME at these angular scales and the
excess is compatible with a physical spinning dust model. We find that LDN 1780
is one of the clearest examples of AME on 1 degree scales. We detected AME with
a significance > 20. We also find at these angular scales that the
location of the peak of the emission at frequencies between 23-70 GHz differs
from the one on the 90-3000 GHz map. In order to investigate the origin of the
AME in this cloud, we use data obtained with the Combined Array for Research in
Millimeter-wave Astronomy (CARMA) that provides 2 arcmin resolution at 30 GHz.
We study the connection between the radio and IR emissions using morphological
correlations. The best correlation is found to be with MIPS 70m, which
traces warm dust (T50K). Finally, we study the difference in radio
emissivity between two locations within the cloud. We measured a factor
of difference in 30 GHz emissivity. We show that this variation can
be explained, using the spinning dust model, by a variation on the dust grain
size distribution across the cloud, particularly changing the carbon fraction
and hence the amount of PAHs.Comment: 14 pages, 11 figures, submitted to MNRA
Confirming the existence of π-allyl-palladium intermediates during the reaction of meta photocycloadducts with palladium(ii) compounds
The transient existence of π-allyl-palladium intermediates formed by the reaction of Pd(OAc)2 and anisole-derived meta photocycloadducts has been demonstrated using NMR techniques. The intermediates tended to be short-lived and underwent rapid reductive elimination of palladium metal to form allylic acetates, however this degradation process could be delayed by changing the reaction solvent from acetonitrile to chloroform
Leggett-Garg inequalities for the statistics of electron transport
We derive a set of Leggett-Garg inequalities (temporal Bell's inequalities)
for the moment generating function of charge transferred through a conductor.
Violation of these inequalities demonstrates the absence of a macroscopic-real
description of the transport process. We show how these inequalities can be
violated by quantum-mechanical systems and consider transport through normal
and superconducting single-electron transistors as examples.Comment: 5 pages; 3 figure
Entanglement and the Phase Transition in Single Mode Superradiance
We consider the entanglement properties of the quantum phase transition in
the single-mode superradiance model, involving the interaction of a boson mode
and an ensemble of atoms. For infinite system size, the atom-field entanglement
of formation diverges logarithmically with the correlation length exponent.
Using a continuous variable representation, we compare this to the divergence
of the entropy in conformal field theories, and derive an exact expression for
the scaled concurrence and the cusp-like non-analyticity of the momentum
squeezing.Comment: 4 pages, 2 figue
Towards conformationally-locked difluorosugar analogues : an unexpected sense of dihydroxylation
Difluorinated cyclooctenones, synthesised using RCM, can be used as templates for stereoselective oxidative transformations to products that undergo transannular reactions to afford conformationally-locked analogues of 2-deoxy-2,2-difluorosugars with different stereochemical relationships between the C-2 and C-3 hydroxyl groups
Sulfur Degassing From Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System Impacts
International audienceDespite its relatively minor abundance in magmas (compared with H2O and CO2), sulfur degassing from volcanoes is of tremendous significance. It can exert substantial influence on magmatic evolution (potentially capable of triggering eruptions); represents one of the most convenient opportunities for volcano monitoring and hazard assessment; and can result in major impacts on the atmosphere, climate and terrestrial ecosystems at a range of spatial and temporal scales. The complex behavior of sulfur in magmas owes much to its multiple valence states (-II, 0, IV, VI), speciation (e.g., S2, H2S, SO2, OCS and SO3 in the gas phase; S2-, SO42- and SO32- in the melt; and non-volatile solid phases such as pyrrhotite and anhydrite), and variation in stable isotopic composition (32S, 33S, 34S and 36S; e.g., Métrich and Mandeville 2010). Sulfur chemistry in the atmosphere is similarly rich involving gaseous and condensed phases and invoking complex homogeneous and heterogeneous chemical reactions. Sulfur degassing from volcanoes and geothermal areas is also important since a variety of microorganisms thrive based on the redox chemistry of sulfur: by reducing sulfur, thiosulfate, sulfite and sulfate to H2S, or oxidizing sulfur and H2S to sulfate (e.g., Takano et al. 1997; Amend and Shock 2001; Shock et al. 2010). Understanding volcanic sulfur degassing thus provides vital insights into magmatic, volcanic and hydrothermal processes; the impacts of volcanism on the Earth system; and biogeochemical cycles. Here, we review the causes of variability in sulfur abundance and speciation in different geodynamic contexts; the measurement of sulfur emissions from volcanoes; links between subsurface processes and surface observations; sulfur chemistry in volcanic plumes; and the consequences of sulfur degassing for climate and the environment
A microfluidic processor for gene expression profiling of single human embryonic stem cells
The gene expression of human embryonic stem cells (hESC) is a critical aspect for understanding the normal and pathological development of human cells and tissues. Current bulk gene expression assays rely on RNA extracted from cell and tissue samples with various degree of cellular heterogeneity. These cell population averaging data are difficult to interpret, especially for the purpose of understanding the regulatory relationship of genes in the earliest phases of development and differentiation of individual cells. Here, we report a microfluidic approach that can extract total mRNA from individual single-cells and synthesize cDNA on the same device with high mRNA-to-cDNA efficiency. This feature makes large-scale single-cell gene expression profiling possible. Using this microfluidic device, we measured the absolute numbers of mRNA molecules of three genes (B2M, Nodal and Fzd4) in a single hESC. Our results indicate that gene expression data measured from cDNA of a cell population is not a good representation of the expression levels in individual single cells. Within the G0/G1 phase pluripotent hESC population, some individual cells did not express all of the 3 interrogated genes in detectable levels. Consequently, the relative expression levels, which are broadly used in gene expression studies, are very different between measurements from population cDNA and single-cell cDNA. The results underscore the importance of discrete single-cell analysis, and the advantages of a microfluidic approach in stem cell gene expression studies
Spin entangled two-particle dark state in quantum transport through coupled quantum dots
We present a transport setup of coupled quantum dots that enables the
creation of spatially separated spin-entangled two-electron dark states. We
prove the existence of an entangled transport dark state by investigating the
system Hamiltonian without coupling to the electronic reservoirs. In the
transport regime the entangled dark state which corresponds to a singlet has a
strongly enhanced Fano factor compared to the dark state which corresponds to a
mixture of the triplet states. Furthermore we calculate the concurrence of the
occupying electrons to show the degree of entanglement in the transport regime.Comment: 9 pages and 3 figure
- …
