110 research outputs found

    Even faster sorting of (not only) integers

    Full text link
    In this paper we introduce RADULS2, the fastest parallel sorter based on radix algorithm. It is optimized to process huge amounts of data making use of modern multicore CPUs. The main novelties include: extremely optimized algorithm for handling tiny arrays (up to about a hundred of records) that could appear even billions times as subproblems to handle and improved processing of larger subarrays with better use of non-temporal memory stores

    AC-KBO Revisited

    Get PDF
    Equational theories that contain axioms expressing associativity and commutativity (AC) of certain operators are ubiquitous. Theorem proving methods in such theories rely on well-founded orders that are compatible with the AC axioms. In this paper we consider various definitions of AC-compatible Knuth-Bendix orders. The orders of Steinbach and of Korovin and Voronkov are revisited. The former is enhanced to a more powerful version, and we modify the latter to amend its lack of monotonicity on non-ground terms. We further present new complexity results. An extension reflecting the recent proposal of subterm coefficients in standard Knuth-Bendix orders is also given. The various orders are compared on problems in termination and completion.Comment: 31 pages, To appear in Theory and Practice of Logic Programming (TPLP) special issue for the 12th International Symposium on Functional and Logic Programming (FLOPS 2014

    An adaptive prefix-assignment technique for symmetry reduction

    Full text link
    This paper presents a technique for symmetry reduction that adaptively assigns a prefix of variables in a system of constraints so that the generated prefix-assignments are pairwise nonisomorphic under the action of the symmetry group of the system. The technique is based on McKay's canonical extension framework [J.~Algorithms 26 (1998), no.~2, 306--324]. Among key features of the technique are (i) adaptability---the prefix sequence can be user-prescribed and truncated for compatibility with the group of symmetries; (ii) parallelizability---prefix-assignments can be processed in parallel independently of each other; (iii) versatility---the method is applicable whenever the group of symmetries can be concisely represented as the automorphism group of a vertex-colored graph; and (iv) implementability---the method can be implemented relying on a canonical labeling map for vertex-colored graphs as the only nontrivial subroutine. To demonstrate the practical applicability of our technique, we have prepared an experimental open-source implementation of the technique and carry out a set of experiments that demonstrate ability to reduce symmetry on hard instances. Furthermore, we demonstrate that the implementation effectively parallelizes to compute clusters with multiple nodes via a message-passing interface.Comment: Updated manuscript submitted for revie

    On Tackling the Limits of Resolution in SAT Solving

    Full text link
    The practical success of Boolean Satisfiability (SAT) solvers stems from the CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a propositional proof complexity perspective, CDCL is no more powerful than the resolution proof system, for which many hard examples exist. This paper proposes a new problem transformation, which enables reducing the decision problem for formulas in conjunctive normal form (CNF) to the problem of solving maximum satisfiability over Horn formulas. Given the new transformation, the paper proves a polynomial bound on the number of MaxSAT resolution steps for pigeonhole formulas. This result is in clear contrast with earlier results on the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper also establishes the same polynomial bound in the case of modern core-guided MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard for CDCL SAT solvers, show that these can be efficiently solved with modern MaxSAT solvers

    Termination and non-termination specification inference

    Get PDF
    Techniques for proving termination and non-termination of imperative programs are usually considered as orthogonal mechanisms. In this paper, we propose a novel mechanism that analyzes and proves both program termination and non-termination at the same time. We first introduce the concept of second-order termination constraints and accumulate a set of relational assumptions on them via a Hoare-style verification. We then solve these assumptions with case analysis to determine the (conditional) termination and non- termination scenarios expressed in some specification logic form. In contrast to current approaches, our technique can construct a summary of terminating and non-terminating behaviors for each method. This enables modularity and reuse for our termination and non-termination proving processes. We have tested our tool on sample programs from a recent termination competition, and compared favorably against state-of-the-art termination analyzers

    A Preference-Based Approach to Backbone Computation with Application to Argumentation

    Get PDF
    The backbone of a constraint satisfaction problem consists of those variables that take the same value in all solutions. Algorithms for determining the backbone of propositional formulas, i.e., Boolean satisfiability (SAT) instances, find various real-world applications. From the knowledge representation and reasoning (KRR) perspective, one interesting connection is that of backbones and the so-called ideal semantics in abstract argumentation. In this paper, we propose a new backbone algorithm which makes use of a "SAT with preferences" solver, i.e., a SAT solver which is guaranteed to output a most preferred satisfying assignment w.r.t. a given preference over literals of the SAT instance at hand. We also show empirically that the proposed approach is specifically effective in computing the ideal semantics of argumentation frameworks, noticeably outperforming an other state-of-the-art backbone solver as well as the winning approach of the recent ICCMA 2017 argumentation solver competition in the ideal semantics track.Peer reviewe

    Termination Analysis with Compositional Transition Invariants

    Full text link
    Modern termination provers rely on a safety checker to construct disjunctively well-founded transition invariants. This safety check is known to be the bottleneck of the procedure. We present an alternative algorithm that uses a light-weight check based on transitivity of ranking relations to prove program termination. We provide an exper-imental evaluation over a set of 87 Windows drivers, and demonstrate that our algorithm is often able to conclude termination by examining only a small fraction of the program. As a consequence, our algorithm is able to outperform known approaches by multiple orders of magnitude
    corecore