2,422 research outputs found
Diurnal variations in optical depth at Mars: Observations and interpretations
Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Optical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combining these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday
Calculations of electric currents in Europa
Electrical currents should flow in the Galilean satellite, Europa, because it is located in Jupiter's corotating magnetosphere. The possible magnitudes of these currents are calculated by assuming that Europa is a differentiated body consisting of an outer H2O layer and a silicate core. Two types of models are considered here: one in which the water is completely frozen and a second in which there is an intermediate liquid layer. For the transverse electric mode (eddy currents), the calculated current density in a liquid layer is approximately 10 to the -5/Am. For the transverse magnetic mode (unipolar generator), the calculated current density in the liquid is severely constrained by the ice layer to a range of only 10 to the -10 to -11th power/ Am, for a total H2O thickness of 100 km, provided that neither layer is less than 4 km thick. The current density is less for a completely frozen H2O layer. If transient cracks were to appear in the ice layer, thereby exposing liquid, the calculated current density could rise to a range of 10 to the -6 to 10 to the -5/Am, depending on layer thicknesses, which would require an exposed area of 10 to the -9 to 10 to the -8 of the Europa surface. The corresponding total current of 2.3x10 to the 5th power A could in 1 yr. electrolyze 7x10 to the 5th power kg of water (and more if the cells were in series), and thereby store up to 10 the 8th power J of energy, but it is not clear how electrolysis can take place in the absence of suitable electrodes. Electrical heating would be significant only if the ice-layer thickness were on the order of 1 m, such as might occur if an exposed liquid surface were to freeze over; the heating under this condition could hinder the thickening of the ice layer
The Induced Magnetic Field of the Moon: Conductivity Profiles and Inferred Temperature
Electromagnetic induction in the moon driven by fluctuations of the interplanetary magnetic field is used to determine the lunar bulk electrical conductivity. The present data clearly show the north-south and east-west transfer function difference as well as high frequency rollover. The difference is shown to be compatible over the mid-frequency range with a noise source associated with the compression of the local remanent field by solar wind dynamic pressure fluctuations. Models for two, three, and four layer; current layer, double current layer, and core plus current layer moons are generated by inversion of the data using a theory which incorporates higher order multipoles. Core radii conductivities generally are in the range 1200 to 1300 km and 0.001 to 0.003 mhos/m; and for the conducting shell 1500 to 1700 km with 0.0001 to 0.0007 mhos/m with an outer layer taken as nonconducting. Core temperature based on available olivine data is 700 to 1000 C
Public Opinion Reform in China
As the People\u27s Republic of China shifts toward a more market-oriented economic system, it has also begun exploring another Western institution: scientific public opinion polling. As Yang Guansan, one of China\u27s leading pollsters, said recently in the Beijing Review: Only five or six years ago, the public opinion poll was considered to be a \u27bourgeois\u27 or \u27capitalist\u27 method of social survey ... Now the taboo has been swept away in the strong tide of reform, which is challenging all of China\u27s traditions, stereotypes and prejudices
Factors governing water condensation in the Martian atmosphere
Modeling results are presented suggesting a diurnal condensation cycle at high altitudes at some seasons and latitudes. In a previous paper, the use of atmospheric optical depth measurements at the Viking lander site to show diurnal variability of water condensation at different seasons of the Mars year was described. Factors influencing the amount of condensation include latitude, season, atmospheric dust content and water vapor content at the observation site. A one-dimensional radiative-convective model is used herein based on the diabatic heating routines under development for the Mars General Circulation Model. The model predicts atmospheric temperature profiles at any latitude, season, time of day and dust load. From these profiles and an estimate of the water vapor, one can estimate the maximum occurring at an early morning hour (AM) and the minimum in the late afternoon (PM). Measured variations in the atmospheric optical density between AM and PM measurements were interpreted as differences in AM and PM condensation
Comparison of the mean photospheric magnetic field and the interplanetary magnetic field
Polarity comparison of solar magnetic field and interplanetary magnetic fiel
Communications Biophysics
Contains reports on three research projects.National Institutes of Health (Grant 5 P01 GM14940-04
Communications Biophysics
Contains reports on five research projects.National Institutes of Health (Grant 1 P01 GM-14940-01)Joint Services Electronics Program under Contract DA 28-043-AMC-02536(E
Shock formation and the ideal shape of ramp compression waves
We derive expressions for shock formation based on the local curvature of the
flow characteristics during dynamic compression. Given a specific ramp adiabat,
calculated for instance from the equation of state for a substance, the ideal
nonlinear shape for an applied ramp loading history can be determined. We
discuss the region affected by lateral release, which can be presented in
compact form for the ideal loading history. Example calculations are given for
representative metals and plastic ablators. Continuum dynamics (hydrocode)
simulations were in good agreement with the algebraic forms. Example
applications are presented for several classes of laser-loading experiment,
identifying conditions where shocks are desired but not formed, and where long
duration ramps are desired
Micro-fabrication of Carbon Structures by Pattern Miniaturization in Resorcinol-Formaldehyde Gel
A simple and novel method to fabricate and miniaturize surface and
sub-surface micro-structures and micro-patterns in glassy carbon is proposed
and demonstrated. An aqueous resorcinol-formaldehyde (RF) sol is employed for
micro-molding of the master-pattern to be replicated, followed by controlled
drying and pyrolysis of the gel to reproduce an isotropically shrunk replica in
carbon. The miniaturized version of the master-pattern thus replicated in
carbon is about one order of magnitude smaller than original master by
repeating three times the above cycle of molding and drying. The
micro-fabrication method proposed will greatly enhance the toolbox for a facile
fabrication of a variety of Carbon-MEMS and C-microfluidic devices.Comment: 16 pages, 5 figure
- …
