1,457 research outputs found

    Local anesthetic infiltration vs. nervous blocks in face’s skin lesions: what’s new

    Get PDF
    Skin tumors are the most common type of cancer. They are localized throughout the body, more frequently in those regions chronically exposed to sun, like face, scalp and neck, compromising aesthetic appearance. The optimization of day hospital surgical procedures is mandatory, to avoid erroneous indications, insufficient intra operative comfort and prolonged recovery. New guidelines should be discussed and shared. Patients were divided in two groups: i. Group A of 50 patients, 21 male and 29 female, age 65 ±9, ASA I – III (10/19/21), weight 68±11 kg, height 160±8, with anesthetic Local Infiltration (LI); ii. Group B of 50 patients, 16 male, 34 female, age 68 ±10, ASA I – III (9/22/19), weight 64 ± 9 kg, height 158 ±11, with nerve block (NB). The purpose of our study is to evaluate the analgesia level, compliance and complication rate after LI or selective NB with alkalinised mepivacaine cloridrate 2%, Guardant®. Demographic data, ASA physical stauts, size of lesions, surgery, anesthesia durations and volume of LA injected were analyzed. Fisher’s exact test and Student’s t test were used; P ≤ 0.05 was considered statistically significant. No differences in age (65 ± 9 vs 68 ± 10 years), weight (68 ± 11 vs 64 ± 9), height (160 ± 8 vs 158 ± 11 cm), size of lesion (23 ± 11 vs 25 ± 14 mm), duration of surgery (47 ± 18 vs 51 ± 23 minutes) were detected in two groups (p > 0.05). Both anesthetic techniques ensured good analgesia, but only nerve’s blocks were be able to determine satisfactory intra operative patient’s comfort, a bloodless wound and weak risk for nervous lesions and toxic reaction to local anesthetic

    POSFET tactile sensing arrays using CMOS technology

    Get PDF
    This work presents fabrication and evaluation of novel POSFET (Piezoelectric Oxide Semiconductor Field Effect Transistor) devices based tactile sensing chip. In the newer version presented here, the tactile sensing chip has been fabricated using CMOS (Complementary Metal Oxide Semiconductor) technology. The chip consists of 4 x 4 POSFET touch sensing devices (or taxels) and both, the individual taxels and the array are designed to match spatio–temporal performance of the human fingertips. To detect contact events, the taxels utilize the contact forces induced change in the polarization level of piezoelectric polymer (and hence change in the induced channel current of MOS). The POSFET device on the chip have linear response in the tested dynamic contact forces range of 0.01–3 N and the sensitivity (without amplification) is 102.4 mV/N

    Preface: symposium on progressive politics

    Get PDF
    Introduction to a special issue of Political Studies Review, based on papers presented at a conference on ‘Progressivism: Past and Present’ held at Senate House in London on 3 July 2012

    Sports review: A content analysis of the International Review for the Sociology of Sport, the Journal of Sport and Social Issues and the Sociology of Sport Journal across 25 years

    Get PDF
    The International Review for the Sociology of Sport, the Journal of Sport and Social Issues and Sociology of Sport Journal have individually and collectively been subject to a systematic content analysis. By focusing on substantive research papers published in these three journals over a 25-year time period it is possible to identify the topics that have featured within the sociology of sport. The purpose of the study was to identify the dominant themes, sports, countries, methodological frameworks and theoretical perspectives that have appeared in the research papers published in these three journals. Using the terms, identified by the author(s), that appear in the paper’s title, abstract and/or listed as a key word, subject term or geographical term, a baseline is established to reflect on the development of the sub-discipline as represented by the content of these three journals. It is suggested that the findings illustrate what many of the more experienced practitioners in the field may have felt subjectively. On the basis of this systematic, empirical study it is now possible to identify those areas have received extensive coverage and those which are under-researched within the sociology of sport. The findings are used to inform a discussion of the role of academic journals and the recent contributions made by Michael Silk, David Andrews, Michael Atkinson and Dominic Malcolm on the past, present and future of the ‘sociology of sport’

    Quantum Mechanical Aspects of Cell Microtubules: Science Fiction or Realistic Possibility?

    Full text link
    Recent experimental research with marine algae points towards quantum entanglement at ambient temperature, with correlations between essential biological units separated by distances as long as 20 Angstr\"oms. The associated decoherence times, due to environmental influences, are found to be of order 400 fs. This prompted some authors to connect such findings with the possibility of some kind of quantum computation taking place in these biological entities: within the decoherence time scales, the cell "quantum calculates" the optimal "path" along which energy and signal would be transported more efficiently. Prompted by these experimental results, in this talk I remind the audience of a related topic proposed several years ago in connection with the possible r\^ole of quantum mechanics and/or field theory on dissipation-free energy transfer in microtubules (MT), which constitute fundamental cell substructures. Quantum entanglement between tubulin dimers was argued to be possible, provided there exists sufficient isolation from other environmental cell effects. The model was based on certain ferroelectric aspects of MT. In the talk I review the model and the associated experimental tests so far and discuss future directions, especially in view of the algae photo-experiments.Comment: 31 pages latex, 11 pdf figures, uses special macros, Invited Plenary Talk at DICE2010, Castello Pasquini, Castiglioncello (Italy), September 13-18 201

    Microcavity controlled coupling of excitonic qubits

    Get PDF
    Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. The most relevant mechanism of coherent coupling of distant qubits is coupling via the electromagnetic field. Here, we demonstrate the controlled coherent coupling of spatially separated excitonic qubits via the photon mode of a solid state microresonator. This is revealed by two-dimensional spectroscopy of the sample's coherent response, a sensitive and selective probe of the coherent coupling. The experimental results are quantitatively described by a rigorous theory of the cavity mediated coupling within a cluster of quantum dots excitons. Having demonstrated this mechanism, it can be used in extended coupling channels - sculptured, for instance, in photonic crystal cavities - to enable a long-range, non-local wiring up of individual emitters in solids

    Quantum transport in quantum networks and photosynthetic complexes at the steady state

    Get PDF
    Recently, several works have analysed the efficiency of photosynthetic complexes in a transient scenario and how that efficiency is affected by environmental noise. Here, following a quantum master equation approach, we study the energy and excitation transport in fully connected networks both in general and in the particular case of the Fenna-Matthew-Olson complex. The analysis is carried out for the steady state of the system where the excitation energy is constantly "flowing" through the system. Steady state transport scenarios are particularly relevant if the evolution of the quantum system is not conditioned on the arrival of individual excitations. By adding dephasing to the system, we analyse the possibility of noise-enhancement of the quantum transport.Comment: 10 pages, single column, 6 figures. Accepted for publication in Plos On

    Long-lived quantum coherence in photosynthetic complexes at physiological temperature

    Full text link
    Photosynthetic antenna complexes capture and concentrate solar radiation by transferring the excitation to the reaction center which stores energy from the photon in chemical bonds. This process occurs with near-perfect quantum efficiency. Recent experiments at cryogenic temperatures have revealed that coherent energy transfer - a wavelike transfer mechanism - occurs in many photosynthetic pigment-protein complexes (1-4). Using the Fenna-Matthews-Olson antenna complex (FMO) as a model system, theoretical studies incorporating both incoherent and coherent transfer as well as thermal dephasing predict that environmentally assisted quantum transfer efficiency peaks near physiological temperature; these studies further show that this process is equivalent to a quantum random walk algorithm (5-8). This theory requires long-lived quantum coherence at room temperature, which never has been observed in FMO. Here we present the first evidence that quantum coherence survives in FMO at physiological temperature for at least 300 fs, long enough to perform a rudimentary quantum computational operation. This data proves that the wave-like energy transfer process discovered at 77 K is directly relevant to biological function. Microscopically, we attribute this long coherence lifetime to correlated motions within the protein matrix encapsulating the chromophores, and we find that the degree of protection afforded by the protein appears constant between 77 K and 277 K. The protein shapes the energy landscape and mediates an efficient energy transfer despite thermal fluctuations. The persistence of quantum coherence in a dynamic, disordered system under these conditions suggests a new biomimetic strategy for designing dedicated quantum computational devices that can operate at high temperature.Comment: PDF files, 15 pages, 3 figures (included in the PDF file

    Educating consent? A conversation with Noam Chomsky on the university and business school education

    Get PDF
    In what follows, we present a conversation with Professor Noam Chomsky on the topic of whether the business school might be a site for progressive political change. The conversation covers a number of key issues related to pedagogy, corporate social responsibility and working conditions in the contemporary business school. We hope the conversion will contribute to the ongoing discussion about the role of the business school in neoliberal societies

    Measurement of charged particle yields from therapeutic beams in view of the design of an innovative hadrontherapy dose monitor

    Get PDF
    Particle Therapy (PT) is an emerging technique, which makes use of charged particles to efficiently cure different kinds of solid tumors. The high precision in the hadrons dose deposition requires an accurate monitoring to prevent the risk of under-dosage of the cancer region or of over-dosage of healthy tissues. Monitoring techniques are currently being developed and are based on the detection of particles produced by the beam interaction into the target, in particular: charged particles, result of target and/or projectile fragmentation, prompt photons coming from nucleus de-excitation and back-to-back γ s, produced in the positron annihilation from β + emitters created in the beam interaction with the target. It has been showed that the hadron beam dose release peak can be spatially correlated with the emission pattern of these secondary particles. Here we report about secondary particles production (charged fragments and prompt γ s) performed at different beam and energies that have a particular relevance for PT applications: 12C beam of 80 MeV/u at LNS, 12C beam 220 MeV/u at GSI, and 12C, 4He, 16O beams with energy in the 50–300 MeV/u range at HIT. Finally, a project for a multimodal dose-monitor device exploiting the prompt photons and charged particles emission will be presented
    corecore