369 research outputs found

    New Brown Dwarfs and an Updated Initial Mass Function in Taurus

    Full text link
    I have performed a search for young low-mass stars and brown dwarfs (BDs) in 2 regions encompassing a total area of 4 deg^2 in the Taurus star-forming region, discovering 15 new members of Taurus. In addition, I present 7 new members outside of these areas from the initial stage of a survey of all of Taurus. These 22 objects exhibit spectral types of M4.5-M9.25 and masses of 0.3-0.015 M_sun according to the theoretical evolutionary models of Baraffe and Chabrier, 7 of which are likely to be BDs. Emission in H(alpha), He I, Ca II, [O I], and [S II] and excess emission in optical and near-IR bands among some of these objects suggest the presence of accretion, outflows, and circumstellar disks. The results from the 4 deg^2 survey have been combined with previous studies of Taurus to arrive at an IMF for a total area of 12.4 deg^2. As in the previous IMFs for Taurus, the updated IMF peaks at a higher mass (0.8 M_sun) than the mass functions in IC 348 and Orion (0.1-0.2 M_sun). Meanwhile, the deficit of BDs in Taurus appears to be less significant (x1.4-1.8) than found in earlier studies (x2) because of a slightly higher BD fraction in the new IMF for Taurus and a lower BD fraction in the new spectroscopic IMF for the Trapezium from Slesnick and coworkers. The spatial distribution of the low-mass stars and BDs discovered in the two new survey areas closely matches that of the more massive members. Thus, on the degree size scales (~3 pc) probed to date, there is no indication that BDs form through ejection.Comment: 35 pages, The Astrophysical Journal, 2004, v617 (December 20

    An L-type substellar object in Orion: reaching the mass boundary between brown dwarfs and giant planets

    Get PDF
    We present J-band photometry and low-resolution optical spectroscopy (600-1000 nm) for one of the faintest substellar member candidates in the young sigma Ori cluster, SOri 47 (I=20.53, Bejar et al. 1999). Its very red (I-J)=3.3+/-0.1 color and its optical spectrum allow us to classify SOri 47 as an L1.5-type object which fits the low-luminosity end of the cluster photometric and spectroscopic sequences. It also displays atmospheric features indicative of low gravity such as weak alkaline lines and hydride and oxide bands, consistent with the expectation for a very young object still undergoing gravitational collapse. Our data lead us to conclude that SOri 47 is a true substellar member of the sigma Ori cluster. Additionally, we present the detection of LiI in its atmosphere which provides an independent confirmation of youth and substellarity. Using current theoretical evolutionary tracks and adopting an age interval of 1-5 Myr for the sigma Ori cluster, we estimate the mass of SOri 47 at 0.015+/-0.005 Msun, i.e. at the minimum mass for deuterium burning, which has been proposed as a definition for the boundary between brown dwarfs and giant planets. SOri 47 could well be the result of a natural extension of the process of cloud fragmentation down to the deuterium burning mass limit; a less likely alternative is that it has originated from a protoplanetary disc around a more massive cluster member and later ejected from its orbit due to interacting effects within this rather sparse (~12 objects/pc^3) young cluster.Comment: 9 pages, 3 figures, accepted for publication in ApJ Letter

    On the origin of the neutral hydrogen supershells: the ionized progenitors and the limitations of the multiple supernovae hypothesis

    Full text link
    Here we address the question whether the ionized shells associated with giant HII regions can be progenitors of the larger HI shell-like objects found in the Milky Way and other spiral and dwarf irregular galaxies. We use for our analysis a sample of 12 HII shells presented recently by Rela\~no et al. (2005, 2007). We calculate the evolutionary tracks that these shells would have if their expansion is driven by multiple supernovae explosions from the parental stellar clusters. We find, contrary to Rela\~no et al. (2007), that the evolutionary tracks of their sample HII shells are inconsistent with the observed parameters of the largest and most massive neutral hydrogen supershells. We conclude that HII shells found inside giant HII regions may represent the progenitors of small or intermediate HI shells, however they cannot evolve into the largest HI objects unless, aside from the multiple supernovae explosions, an additional energy source contributes to their expansion.Comment: Accepted for publication in ApJ, tentatively scheduled for the ApJ July 1, 2008, v681n1 issue. 19 pages, 4 figure

    Four Brown Dwarfs in the Taurus Star-Forming Region

    Get PDF
    We have identified four brown dwarfs in the Taurus star-forming region. They were first selected from RR and II CCD photometry of 2.29 square degrees obtained at the Canada-France-Hawaii Telescope. Subsequently, they were recovered in the 2MASS second incremental data release point source catalog. Low-resolution optical spectra obtained at the William Herschel telescope allow us to derive spectral types in the range M7--M9. One of the brown dwarfs has very strong Hα\alpha emission (EW=-340 \AA). It also displays Brγ\gamma emission in an infrared spectrum obtained with IRCS on the Subaru telescope, suggesting that it is accreting matter from a disk. The \ion{K}{1} resonance doublet and the \ion{Na}{1} subordinate doublet at 818.3 and 819.5 nm in these Taurus objects are weaker than in field dwarfs of similar spectral type, consistent with low surface gravities as expected for young brown dwarfs. Two of the objects are cooler and fainter than GG Tau Bb, the lowest mass known member of the Taurus association. We estimate masses of only 0.03 M_\odot for them. The spatial distribution of brown dwarfs in Taurus hints to a possible anticorrelation between the density of stars and the density of brown dwarfs.Comment: ApJ Letters (in press

    Search for the companions of Galactic SNe Ia

    Full text link
    The central regions of the remnants of Galactic SNe Ia have been examined for the presence of companion stars of the exploded supernovae. We present the results of this survey for the historical SN 1572 and SN 1006. The spectra of the stars are modeled to obtain Teff, log g and the metallicity. Radial velocities are obtained with an accuracy of 5--10 km s1^{-1}. Implications for the nature of the companion star in SNeIa follow.Comment: 8 pages, 2 Postscript figures. Appeared in "From Twilight to Highlight: the Physics of Supernovae", ed. W. Hillebrandt & B. Leibundgut (Springer), pp. 140-14

    Gaia DR2 view of the Lupus V-VI clouds: the candidate diskless young stellar objects are mainly background contaminants

    Get PDF
    Extensive surveys of star-forming regions with Spitzer have revealed populations of disk-bearing young stellar objects. These have provided crucial constraints, such as the timescale of dispersal of protoplanetary disks, obtained by carefully combining infrared data with spectroscopic or X-ray data. While observations in various regions agree with the general trend of decreasing disk fraction with age, the Lupus V and VI regions appeared to have been at odds, having an extremely low disk fraction. Here we show, using the recent Gaia data release 2 (DR2), that these extremely low disk fractions are actually due to a very high contamination by background giants. Out of the 83 candidate young stellar objects (YSOs) in these clouds observed by Gaia, only five have distances of 150 pc, similar to YSOs in the other Lupus clouds, and have similar proper motions to other members in this star-forming complex. Of these five targets, four have optically thick (Class II) disks. On the one hand, this result resolves the conundrum of the puzzling low disk fraction in these clouds, while, on the other hand, it further clarifies the need to confirm the Spitzer selected diskless population with other tracers, especially in regions at low galactic latitude like Lupus V and VI. The use of Gaia astrometry is now an independent and reliable way to further assess the membership of candidate YSOs in these, and potentially other, star-forming regions.Comment: Accepted for publication on Astronomy&Astrophysics Letter

    The "Mysterious" Origin of Brown Dwarfs

    Full text link
    Hundreds of brown dwarfs (BDs) have been discovered in the last few years in stellar clusters and among field stars. BDs are almost as numerous as hydrogen burning stars and so a theory of star formation should also explain their origin. The ``mystery'' of the origin of BDs is that their mass is two orders of magnitude smaller than the average Jeans' mass in star--forming clouds, and yet they are so common. In this work we investigate the possibility that gravitationally unstable protostellar cores of BD mass are formed directly by the process of turbulent fragmentation. Supersonic turbulence in molecular clouds generates a complex density field with a very large density contrast. As a result, a fraction of BD mass cores formed by the turbulent flow are dense enough to be gravitationally unstable. We find that with density, temperature and rms Mach number typical of cluster--forming regions, turbulent fragmentation can account for the observed BD abundance.Comment: 11 pages, 3 figures, ApJ submitted Error in equation 1 has been corrected. Improved figure

    New Low-Mass Stars and Brown Dwarfs with Disks in Lupus

    Full text link
    Using the Infrared Array Camera and the Multiband Imaging Photometer aboard the {\it Spitzer Space Telescope}, we have obtained images of the Lupus 3 star-forming cloud at 3.6, 4.5, 5.8, 8.0, and 24 \micron. We present photometry in these bands for the 41 previously known members that are within our images. In addition, we have identified 19 possible new members of the cloud based on red 3.6-8.0 \micron colors that are indicative of circumstellar disks. We have performed optical spectroscopy on 6 of these candidates, all of which are confirmed as young low-mass members of Lupus 3. The spectral types of these new members range from M4.75 to M8, corresponding to masses of 0.2-0.03 MM_\odot for ages of 1\sim1 Myr according to theoretical evolutionary models. We also present optical spectroscopy of a candidate disk-bearing object in the vicinity of the Lupus 1 cloud, 2M 1541-3345, which Jayawardhana & Ivanov recently classified as a young brown dwarf (M0.03M\sim0.03 MM_\odot) with a spectral type of M8. In contrast to their results, we measure an earlier spectral type of M5.75±\pm0.25 for this object, indicating that it is probably a low-mass star (M0.1M\sim0.1 MM_\odot). In fact, according to its gravity-sensitive absorption lines and its luminosity, 2M 1541-3345 is older than members of the Lupus clouds (τ1\tau\sim1 Myr) and instead is probably a more evolved pre-main-sequence star that is not directly related to the current generation of star formation in Lupus.Comment: 18 pages, 3 tables, 6 figure

    First Detection of Millimeter Dust Emission from Brown Dwarf Disks

    Full text link
    We report results from the first deep millimeter continuum survey targeting Brown Dwarfs (BDs). The survey led to the first detection of cold dust in the disks around two young BDs (CFHT-BD-Tau 4 and IC348 613), with deep JCMT and IRAM observations reaching flux levels of a few mJy. The dust masses are estimated to be a few Earth masses assuming the same dust opacities as usually applied to TTauri stars.Comment: 5 pages, accepted for ApJ
    corecore