28 research outputs found
Isolation and characterization of metal-resistant bacterial strain from wastewater and evaluation of its capacity in metal-ions removal using living and dry bacterial cells
Assessment of cadmium tolerance and biosorptive potential of Bacillus Cereus GCFSD01 isolated from cadmium contaminated soil
Chromium Removal through Biosorption and Bioaccumulation by Bacteria from Tannery Effluents Contaminated Soil
Biosorption of Lead, Copper, and Cadmium by Phanerochaete chrysosporium in Ternary Metal Mixtures: Statistical Analysis of Individual and Interaction Effects
Assessment of heavy metal tolerance and biosorptive potential of Klebsiella variicola isolated from industrial effluents
Abstract Heavy metal contamination now a day is one of the major global environmental concerns. Textile effluents of Faisalabad Pakistan are heavily contaminated with heavy metals and demands to explore native microorganisms as effective bioremediation tool. Study aimed to isolate heavy metal tolerant bacteria from textile effluents of Faisalabad Pakistan and to evaluate their biosorptive potential. Out of 30 collected samples 13 isolates having metal tolerance potential against Ni and Co were screened out. Maximum tolerable concentration and multi metal resistance was determined. A native bacterial strain showing maximum tolerance to Ni and Co and multi metal resistance against Ni, Co and Cr at different levels was selected and named as Abuzar Microbiology 1 (AMIC1). Molecular characterization confirmed it as Klebsiella variicola which was submitted in First fungal culture bank of Pakistan (FCBP-WB-0688). ICP-OES revealed that it reduced Ni (50, 49%) and Co (71, 68.6%) after 24 and 48 h, respectively. FT-IR was used to analyze functional groups and overall nature of chemical bonds. Changes in spectra of biomass were observed after absorption of Ni and Co by K. variicola. SEM revealed morphological changes in bacteria in response to metal stress. Both metals affected bacterial cell wall and created pores in it. However effect of Ni was more pronounced than Co. It was concluded that K. variicola, a native novel strain possessed significant heavy metal tolerance and bioremediation potential against Ni and Co. It may be used in future for development of bioremediation agents to detoxify textile effluents at industrial surroundings
Application of the electrocoagulation technique for treating heavy metals containing wastewater from the pickling process of a billet plant
Arsenic biosorption using pretreated biomass of psychrotolerant Yersinia sp. strain SOM-12D3 isolated from Svalbard, Arctic
A Gram-negative, arsenite-resistant psychrotolerant bacterial strain, Yersinia sp. strain SOM-12D3, was isolated from a biofilm sample collected from a lake at Svalbard in the Arctic area. To our knowledge, this is the first study on the ability of acid-treated and untreated, non-living biomass of strain SOM-12D3 to absorb arsenic. We conducted batch experiments at pH 7, with an initial As(III) concentration of 6.5 ppm, at 30 °C with 80 min of contact time. The Langmuir isotherm model fitted the equilibrium data better than Freundlich, and the sorption kinetics of As(III) biosorption followed the pseudo-second-order rate equation well for both types of non-living biomass. The highest biosorption capacity of the acid-treated biomass obtained by the Langmuir model was 159 mg/g. Further, a high recovery efficiency of 96% for As(III) was achieved using 0.1 M HCl within four cycles, which indicated high adsorption/desorption. Fourier transformed infrared (FTIR) demonstrated the involvement of hydroxyl, amide, and amine groups in As(III) biosorption. Field emission scanning electron microscopy–energy dispersive analysis (FESEM-EDAX) indicated the different morphological changes occurring in the cell after acid treatment and arsenic biosorption. Our results highlight the potential of using acid-treated non-living biomass of the psychrotolerant bacterium, Yersinia sp. Strain SOM-12D3 as a new biosorbent to remove As(III) from contaminated waters
