1,907 research outputs found

    Is the physical vacuum a preferred frame ?

    Full text link
    It is generally assumed that the physical vacuum of particle physics should be characterized by an energy momentum tensor in such a way to preserve exact Lorentz invariance. On the other hand, if the ground state were characterized by its energy-momentum vector, with zero spatial momentum and a non-zero energy, the vacuum would represent a preferred frame. Since both theoretical approaches have their own good motivations, we propose an experimental test to decide between the two scenarios.Comment: 12 pages, no figure

    Combinatorial optimization and metaheuristics

    Get PDF
    Today, combinatorial optimization is one of the youngest and most active areas of discrete mathematics. It is a branch of optimization in applied mathematics and computer science, related to operational research, algorithm theory and computational complexity theory. It sits at the intersection of several fields, including artificial intelligence, mathematics and software engineering. Its increasing interest arises for the fact that a large number of scientific and industrial problems can be formulated as abstract combinatorial optimization problems, through graphs and/or (integer) linear programs. Some of these problems have polynomial-time (“efficient”) algorithms, while most of them are NP-hard, i.e. it is not proved that they can be solved in polynomial-time. Mainly, it means that it is not possible to guarantee that an exact solution to the problem can be found and one has to settle for an approximate solution with known performance guarantees. Indeed, the goal of approximate methods is to find “quickly” (reasonable run-times), with “high” probability, provable “good” solutions (low error from the real optimal solution). In the last 20 years, a new kind of algorithm commonly called metaheuristics have emerged in this class, which basically try to combine heuristics in high level frameworks aimed at efficiently and effectively exploring the search space. This report briefly outlines the components, concepts, advantages and disadvantages of different metaheuristic approaches from a conceptual point of view, in order to analyze their similarities and differences. The two very significant forces of intensification and diversification, that mainly determine the behavior of a metaheuristic, will be pointed out. The report concludes by exploring the importance of hybridization and integration methods

    Constructive Heuristics for the Minimum Labelling Spanning Tree Problem: a preliminary comparison

    Get PDF
    This report studies constructive heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree that uses edges that are as similar as possible. Given an undirected labeled connected graph (i.e., with a label or color for each edge), the minimum labeling spanning tree problem seeks a spanning tree whose edges have the smallest possible number of distinct labels. The model can represent many real-world problems in telecommunication networks, electric networks, and multimodal transportation networks, among others, and the problem has been shown to be NP-complete even for complete graphs. A primary heuristic, named the maximum vertex covering algorithm has been proposed. Several versions of this constructive heuristic have been proposed to improve its efficiency. Here we describe the problem, review the literature and compare some variants of this algorithm

    Variable neighbourhood search for the minimum labelling Steiner tree problem

    Get PDF
    We present a study on heuristic solution approaches to the minimum labelling Steiner tree problem, an NP-hard graph problem related to the minimum labelling spanning tree problem. Given an undirected labelled connected graph, the aim is to find a spanning tree covering a given subset of nodes of the graph, whose edges have the smallest number of distinct labels. Such a model may be used to represent many real world problems in telecommunications and multimodal transportation networks. Several metaheuristics are proposed and evaluated. The approaches are compared to the widely adopted Pilot Method and it is shown that the Variable Neighbourhood Search that we propose is the most effective metaheuristic for the problem, obtaining high quality solutions in short computational running time

    Metaheuristic approaches for the quartet method of hierarchical clustering

    Get PDF
    Given a set of objects and their pairwise distances, we wish to determine a visual representation of the data. We use the quartet paradigm to compute a hierarchy of clusters of the objects. The method is based on an NP-hard graph optimization problem called the Minimum Quartet Tree Cost problem. This paper presents and compares several metaheuristic approaches to approximate the optimal hierarchy. The performance of the algorithms is tested through extensive computational experiments and it is shown that the Reduced Variable Neighbourhood Search metaheuristic is the most effective approach to the problem, obtaining high quality solutions in short computational running times

    Dynamical transitions in incommensurate systems

    Get PDF
    In the dynamics of the undamped Frenkel-Kontorova model with kinetic terms, we find a transition between two regimes, a floating incommensurate and a pinned incommensurate phase. This behavior is compared to the static version of the model. A remarkable difference is that, while in the static case the two regimes are separated by a single transition (the Aubry transition), in the dynamical case the transition is characterized by a critical region, in which different phenomena take place at different times. In this paper, the generalized angular momentum we have previously introduced, and the dynamical modulation function are used to begin a characterization of this critical region. We further elucidate the relation between these two quantities, and present preliminary results about the order of the dynamical transition.Comment: 7 pages, 6 figures, file 'epl.cls' necessary for compilation provided; subm. to Europhysics Letter

    Traduction et validation française du Questionnaire de Répression de Weinberger

    Get PDF
    International audienceL'objectif de ce travail a été de réaliser une étude préliminaire de validation de la version française d'un questionnaire de répression émotionnelle (WAI, Weinberger Adjustment Inventory, 1989). Ses relations ont été explorées avec des évaluations de l'anxiété, de la dépression et de l'alexithymie
    corecore