564 research outputs found

    Enhanced spin accumulation at room temperature in graphene spin valves with amorphous carbon interfacial layers

    Get PDF
    We demonstrate a large enhancement of the spin accumulation in monolayer graphene following electron-beam induced deposition of an amorphous carbon layer at the ferromagnet-graphene interface. The enhancement is 10^4-fold when graphene is deposited onto poly(methyl metacrylate) (PMMA) and exposed with sufficient electron-beam dose to cross-link the PMMA, and 10^3-fold when graphene is deposited directly onto SiO2 and exposed with identical dose. We attribute the difference to a more efficient carbon deposition in the former case due to an increase in the presence of compounds containing carbon, which are released by the PMMA. The amorphous carbon interface can sustain very large current densities without degrading, which leads to very large spin accumulations exceeding 500 microeVs at room temperature

    Fingerprints of Inelastic Transport at the Surface of the Topological Insulator Bi2Se3: Role of Electron-Phonon Coupling

    Get PDF
    We report on electric-field and temperature dependent transport measurements in exfoliated thin crystals of Bi2_{2}Se3_{3} topological insulator. At low temperatures (<50< 50 K) and when the chemical potential lies inside the bulk gap, the crystal resistivity is strongly temperature dependent, reflecting inelastic scattering due to the thermal activation of optical phonons. A linear increase of the current with voltage is obtained up to a threshold value at which current saturation takes place. We show that the activated behavior, the voltage threshold and the saturation current can all be quantitatively explained by considering a single optical phonon mode with energy Ω8\hbar \Omega \approx 8 meV. This phonon mode strongly interacts with the surface states of the material and represents the dominant source of scattering at the surface at high electric fields.Comment: Supplementary Material at: http://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.112.086601/TIPhonon_SM.pd

    Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    Get PDF
    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large resistivity of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.Comment: 14 pages, 6 figures. Accepted in 2D Materials. https://doi.org/10.1088/2053-1583/aa882

    Large cone angle magnetization precession of an individual nanomagnet with dc electrical detection

    Get PDF
    We demonstrate on-chip resonant driving of large cone-angle magnetization precession of an individual nanoscale permalloy element. Strong driving is realized by locating the element in close proximity to the shorted end of a coplanar strip waveguide, which generates a microwave magnetic field. We used a microwave frequency modulation method to accurately measure resonant changes of the dc anisotropic magnetoresistance. Precession cone angles up to 909^{0} are determined with better than one degree of resolution. The resonance peak shape is well-described by the Landau-Lifshitz-Gilbert equation

    Electrical detection of spin pumping: dc voltage generated by ferromagnetic resonance at ferromagnet/nonmagnet contact

    Get PDF
    We describe electrical detection of spin pumping in metallic nanostructures. In the spin pumping effect, a precessing ferromagnet attached to a normal-metal acts as a pump of spin-polarized current, giving rise to a spin accumulation. The resulting spin accumulation induces a backflow of spin current into the ferromagnet and generates a dc voltage due to the spin dependent conductivities of the ferromagnet. The magnitude of such voltage is proportional to the spin-relaxation properties of the normal-metal. By using platinum as a contact material we observe, in agreement with theory, that the voltage is significantly reduced as compared to the case when aluminum was used. Furtheremore, the effects of rectification between the circulating rf currents and the magnetization precession of the ferromagnet are examined. Most significantly, we show that using an improved layout device geometry these effects can be minimized.Comment: 9 pages, 11 figure

    Spin communication over 30 μ\mum long channels of chemical vapor deposited graphene on SiO2_2

    Get PDF
    We demonstrate a high-yield fabrication of non-local spin valve devices with room-temperature spin lifetimes of up to 3 ns and spin relaxation lengths as long as 9 μ\mum in platinum-based chemical vapor deposition (Pt-CVD) synthesized single-layer graphene on SiO2_2/Si substrates. The spin-lifetime systematically presents a marked minimum at the charge neutrality point, as typically observed in pristine exfoliated graphene. However, by studying the carrier density dependence beyond n ~ 5 x 1012^{12} cm2^{-2}, via electrostatic gating, it is found that the spin lifetime reaches a maximum and then starts decreasing, a behavior that is reminiscent of that predicted when the spin-relaxation is driven by spin-orbit interaction. The spin lifetimes and relaxation lengths compare well with state-of-the-art results using exfoliated graphene on SiO2_2/Si, being a factor two-to-three larger than the best values reported at room temperature using the same substrate. As a result, the spin signal can be readily measured across 30 μ\mum long graphene channels. These observations indicate that Pt-CVD graphene is a promising material for large-scale spin-based logic-in-memory applications

    Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet

    Get PDF
    We report direct electrical detection of spin pumping, using a lateral normal metal/ferromagnet/normal metal device, where a single ferromagnet in ferromagnetic resonance pumps spin polarized electrons into the normal metal, resulting in spin accumulation. The resulting backflow of spin current into the ferromagnet generates a d.c. voltage due to the spin dependent conductivities of the ferromagnet. By comparing different contact materials (Al and /or Pt), we find, in agreement with theory, that the spin related properties of the normal metal dictate the magnitude of the d.c. voltage

    Charge and Spin Currents Generated by Dynamical Spins

    Full text link
    We demonstrate theoretically that a charge current and a spin current are generated by spin dynamics in the presence of spin-orbit interaction in the perturbative regime. We consider a general spin-orbit interaction including the spatially inhomogeneous case. Spin current due to spin damping is identified as one origin of generated charge current, but other contributions exist, such as the one due to an induced conservative field and the one arising from the inhomogeneity of spin-orbit interaction.Comment: 14 pages, 4 figure

    Strongly anisotropic spin relaxation in graphene/transition metal dichalcogenide heterostructures at room temperature

    Get PDF
    Graphene has emerged as the foremost material for future two-dimensional spintronics due to its tuneable electronic properties. In graphene, spin information can be transported over long distances and, in principle, be manipulated by using magnetic correlations or large spin-orbit coupling (SOC) induced by proximity effects. In particular, a dramatic SOC enhancement has been predicted when interfacing graphene with a semiconducting transition metal dechalcogenide, such as tungsten disulphide (WS2_2). Signatures of such an enhancement have recently been reported but the nature of the spin relaxation in these systems remains unknown. Here, we unambiguously demonstrate anisotropic spin dynamics in bilayer heterostructures comprising graphene and WS2_2. By using out-of-plane spin precession, we show that the spin lifetime is largest when the spins point out of the graphene plane. Moreover, we observe that the spin lifetime varies over one order of magnitude depending on the spin orientation, indicating that the strong spin-valley coupling in WS2_2 is imprinted in the bilayer and felt by the propagating spins. These findings provide a rich platform to explore coupled spin-valley phenomena and offer novel spin manipulation strategies based on spin relaxation anisotropy in two-dimensional materials
    corecore