883 research outputs found
Is there any evidence that ionised outflows quench star formation in type 1 quasars at z<1?
The aim of this paper is to test the basic model of negative AGN feedback.
According to this model, once the central black hole accretes at the Eddington
limit and reaches a certain critical mass, AGN driven outflows blow out gas,
suppressing star formation in the host galaxy and self-regulating black hole
growth. We consider a sample of 224 quasars selected from the SDSS at z<1
observed in the infrared band by Herschel. We evaluate the star formation rate
in relation to several outflow signatures traced by the [OIII]4959,5007 and
[OII]3726,3729 emission lines in about half of the sample with high quality
spectra. Most of the quasars show asymmetric and broad wings in [OIII], which
we interpret as outflow signatures. We separate the quasars in two groups,
``weakly'' and ``strongly'' outflowing, using three different criteria. When we
compare the mean star formation rate in five redshift bins in the two groups,
we find that the SFRs are comparable or slightly larger in the strongly
outflowing quasars. We estimate the stellar mass from SED fitting and the
quasars are distributed along the star formation main sequence, although with a
large scatter. The scatter from this relation is uncorrelated with respect to
the kinematic properties of the outflow. Moreover, for quasars dominated in the
infrared by starburst or by AGN emission, we do not find any correlation
between the star formation rate and the velocity of the outflow, a trend
previously reported in the literature for pure starburst galaxies. We conclude
that the basic AGN negative feedback scenario seems not to agree with our
results. Although we use a large sample of quasars, we did not find any
evidence that the star formation rate is suppressed in the presence of AGN
driven outflows on large scale. A possibility is that feedback is effective
over much longer timescales than those of single episodes of quasar activity.Comment: 18 pages, new version that implements the suggestions of the referee
and matches the AA published versio
Strongly star-forming rotating disks in a complex merging system at z = 4,7 as revealed by ALMA
We performed a kinematical analysis of the [CII] line emission of the BR
1202-0725 system at z~4,7 using ALMA observations. The most prominent sources
of this system are a quasar and a submillimeter galaxy, separated by a
projected distance of about 24 kpc and characterized by very high SFR, higher
than 1000 Msun/yr. However, the ALMA observations reveal that these galaxies
apparently have undisturbed rotating disks, which is at variance with the
commonly accepted scenario in which strong star formation activity is induced
by a major merger. We also detected faint components which, after spectral
deblending, were spatially resolved from the main QSO and SMG emissions. The
relative velocities and positions of these components are compatible with
orbital motions within the gravitational potentials generated by the QSO host
galaxy and the SMG, suggesting that they are smaller galaxies in interaction or
gas clouds in accretion flows of tidal streams. We did not find any clear
spectral evidence for outflows caused by AGN or stellar feedback. This suggests
that the high star formation rates might be induced by interactions or minor
mergers with these companions, which do not affect the large-scale kinematics
of the disks, however. Our kinematical analysis also indicates that the QSO and
the SMG have similar Mdyn, mostly in the form of molecular gas, and that the
QSO host galaxy and the SMG are seen close to face-on with slightly different
disk inclinations: the QSO host galaxy is seen almost face-on (i~15), while the
SMG is seen at higher inclinations (i~25). Finally, the ratio between the black
hole mass of the QSO, obtained from XShooter spectroscopy, and the Mdyn of the
host galaxy is similar to value found in very massive local galaxies,
suggesting that the evolution of black hole galaxy relations is probably better
studied with dynamical than with stellar host galaxy masses.Comment: Accepted for publication in Astronomy and Astrophysic
New XMM-Newton observation of the Phoenix cluster: properties of the cool core
(Abridged) We present a spectral analysis of a deep (220 ks) XMM-Newton
observation of the Phoenix cluster (SPT-CL J2344-4243), which we also combine
with Chandra archival ACIS-I data. We extract CCD and RGS X-ray spectra from
the core region to search for the signature of cold gas, and constrain the mass
deposition rate in the cooling flow which is thought to be responsible of the
massive star formation episode observed in the BCG. We find an average mass
deposition rate of /yr in the temperature range 0.3-3.0 keV from MOS data. A
temperature-resolved analysis shows that a significant amount of gas is
deposited only above 1.8 keV, while upper limits of the order of hundreds of
/yr can be put in the 0.3-1.8 keV temperature range. From pn data we
obtain /yr, and the
upper limits from the temperature-resolved analysis are typically a factor of 3
lower than MOS data. In the RGS spectrum, no line emission from ionization
states below Fe XXIII is seen above , and the amount of gas cooling
below keV has a best-fit value
/yr. In addition, our analysis of the FIR SED of the BCG based on
Herschel data provides /yr, significantly lower
than previous estimates by a factor 1.5. Current data are able to firmly
identify substantial amount of cooling gas only above 1.8 keV in the core of
the Phoenix cluster. While MOS data analysis is consistent with values as high
as within , pn data provide
yr at c.l. at temperature below 1.8 keV. At present, this
discrepancy cannot be explained on the basis of known calibration uncertainties
or other sources of statistical noise.Comment: A&A in press, typos corrected, revised text according to published
versio
The reversal of the SF-density relation in a massive, X-ray selected galaxy cluster at z=1.58: results from Herschel
Dusty, star-forming galaxies have a critical role in the formation and
evolution of massive galaxies in the Universe. Using deep far-infrared imaging
in the range 100-500um obtained with the Herschel telescope, we investigate the
dust-obscured star formation in the galaxy cluster XDCP J0044.0-2033 at z=1.58,
the most massive cluster at z >1.5, with a measured mass M200= 4.7x10
Msun. We perform an analysis of the spectral energy distributions (SEDs) of 12
cluster members (5 spectroscopically confirmed) detected with >3
significance in the PACS maps, all ULIRGs. The individual star formation rates
(SFRs) lie in the range 155-824 Ms/yr, with dust temperatures of 2435 K.
We measure a strikingly high amount of star formation (SF) in the cluster core,
SFR ( 1875158 Ms/yr, 4x higher than the amount of star
formation in the cluster outskirts. This scenario is unprecedented in a galaxy
cluster, showing for the first time a reversal of the SF-density relation at
z~1.6 in a massive cluster.Comment: Letter accepted for publication in MNRAS, ESA Press Release on 18
December 201
The MAGNUM survey: Positive feedback in the nuclear region of NGC 5643 suggested by MUSE
We study the ionization and kinematics of the ionized gas in the nuclear
region of the barred Seyfert 2 galaxy NGC~5643 using MUSE integral field
observations in the framework of the MAGNUM (Measuring Active Galactic Nuclei
Under MUSE Microscope) survey. The data were used to identify regions with
different ionization conditions and to map the gas density and the dust
extinction. We find evidence for a double sided ionization cone, possibly
collimated by a dusty structure surrounding the nucleus. At the center of the
ionization cone, outflowing ionized gas is revealed as a blueshifted,
asymmetric wing of the [OIII] emission line, up to projected velocity
v(10)~-450 km/s. The outflow is also seen as a diffuse, low luminosity radio
and X-ray jet, with similar extension. The outflowing material points in the
direction of two clumps characterized by prominent line emission with spectra
typical of HII regions, located at the edge of the dust lane of the bar. We
propose that the star formation in the clumps is due to `positive feedback'
induced by gas compression by the nuclear outflow, providing the first
candidate for outflow induced star formation in a Seyfert-like radio quiet AGN.
This suggests that positive feedback may be a relevant mechanism in shaping the
black hole-host galaxy coevolution.Comment: 9 pages, 7 figures, accepted for publication in A&
New fully empirical calibrations of strong-line metallicity indicators in star-forming galaxies
We derive new empirical calibrations for strong-line diagnostics of gas-phase metallicity in local star-forming galaxies by uniformly applying the Te method over the full metallicity range probed by the Sloan Digital Sky Survey (SDSS). To measure electron temperatures at high metallicity, where the auroral lines needed are not detected in single galaxies, we stacked spectra of more than 110 000 galaxies from the SDSS in bins of log[O ii]/Hβ and log[O iii]/Hβ. This stacking scheme does not assume any dependence of metallicity on mass or star formation rate, but only that galaxies with the same line ratios have the same oxygen abundance. We provide calibrations which span more than 1 dex in metallicity and are entirely defined on a consistent absolute Te metallicity scale for galaxies. We apply our calibrations to the SDSS sample and find that they provide consistent metallicity estimates to within 0.05 dex.MC acknowledges financial support from INAF for his PhD fellowship. RM acknowledges support from the ERC Advanced Grant 695671 "QUENCH'' and support from the Science and Technology Facilities Council (STFC). Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/
Herschel Far-IR counterparts of SDSS galaxies: Analysis of commonly used Star Formation Rate estimates
We study a hundred of galaxies from the spectroscopic Sloan Digital Sky
Survey with individual detections in the Far-Infrared Herschel PACS bands (100
or 160 m) and in the GALEX Far-UltraViolet band up to z0.4 in the
COSMOS and Lockman Hole fields. The galaxies are divided into 4 spectral and 4
morphological types. For the star forming and unclassifiable galaxies we
calculate dust extinctions from the UV slope, the H/H ratio and
the ratio. There is a tight correlation between the
dust extinction and both and metallicity. We calculate
SFR and compare it with other SFR estimates (H, UV, SDSS)
finding a very good agreement between them with smaller dispersions than
typical SFR uncertainties. We study the effect of mass and metallicity, finding
that it is only significant at high masses for SFR. For the AGN and
composite galaxies we find a tight correlation between SFR and L
(0.29), while the dispersion in the SFR - L relation is
larger (0.57). The galaxies follow the prescriptions of the
Fundamental Plane in the M-Z-SFR space.Comment: 24 pages, 23 figures, accepted for publication in MNRA
Seminar Users in the Arabic Twitter Sphere
We introduce the notion of "seminar users", who are social media users
engaged in propaganda in support of a political entity. We develop a framework
that can identify such users with 84.4% precision and 76.1% recall. While our
dataset is from the Arab region, omitting language-specific features has only a
minor impact on classification performance, and thus, our approach could work
for detecting seminar users in other parts of the world and in other languages.
We further explored a controversial political topic to observe the prevalence
and potential potency of such users. In our case study, we found that 25% of
the users engaged in the topic are in fact seminar users and their tweets make
nearly a third of the on-topic tweets. Moreover, they are often successful in
affecting mainstream discourse with coordinated hashtag campaigns.Comment: to appear in SocInfo 201
- …
