1,564 research outputs found

    Kepler Transit Depths Contaminated by a Phantom Star

    Full text link
    We present ground-based observations from the Discovery Channel Telescope (DCT) of three transits of Kepler-445c---a supposed super-Earth exoplanet with properties resembling GJ 1214b---and demonstrate that the transit depth is approximately 50 percent shallower than the depth previously inferred from Kepler Spacecraft data. The resulting decrease in planetary radius significantly alters the interpretation of the exoplanet's bulk composition. Despite the faintness of the M4 dwarf host star, our ground-based photometry clearly recovers each transit and achieves repeatable 1-sigma precision of approximately 0.2 percent (2 millimags). The transit parameters estimated from the DCT data are discrepant with those inferred from the Kepler data to at least 17-sigma confidence. This inconsistency is due to a subtle miscalculation of the stellar crowding metric during the Kepler pre-search data conditioning (PDC). The crowding metric, or CROWDSAP, is contaminated by a non-existent "phantom star" originating in the USNO-B1 catalog and inherited by the Kepler Input Catalog (KIC). Phantom stars in the KIC are likely rare, but they have the potential to affect statistical studies of Kepler targets that use the PDC transit depths for a large number of exoplanets where individual follow-up observation of each is not possible. The miscalculation of Kepler-445c's transit depth emphasizes the importance of stellar crowding in the Kepler data, and provides a cautionary tale for the analysis of data from the Transiting Exoplanet Survey Satellite (TESS), which will have even larger pixels than Kepler.Comment: 11 pages, 10 figures, 5 tables. Accepted for publication in AJ. Transit light curves will be available from AJ as Db

    Long-term, multiwavelength light curves of ultra-cool dwarfs: II. The evolving light curves of the T2. 5 SIMP 0136 & the uncorrelated light curves of the M9 TVLM 513

    Full text link
    We present multiwavelength, multi-telescope, ground-based follow-up photometry of the white dwarf WD 1145+017, that has recently been suggested to be orbited by up to six or more, short-period, low- mass, disintegrating planetesimals. We detect 9 significant dips in flux of between 10% and 30% of the stellar flux from our ground-based photometry. We observe transits deeper than 10% on average every ∼3.6 hr in our photometry. This suggests that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the multiple asymmetric transits that we observe, we confirm that the transit egress timescale is usually longer than the ingress timescale, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals in this system are unclear from the transit-times, but at least one object, and likely more, have orbital periods of ∼4.5 hours. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high precision photometry also displays low amplitude variations suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. For the significant transits we observe, we compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions the radius of single-size particles in the cometary tails streaming behind the planetesimals in this system must be ∼0.15 μm or larger, or ∼0.06 μm or smaller, with 2σ confidence

    Oscillators and relaxation phenomena in Pleistocene climate theory

    Get PDF
    Ice sheets appeared in the northern hemisphere around 3 million years ago and glacial-interglacial cycles have paced Earth's climate since then. Superimposed on these long glacial cycles comes an intricate pattern of millennial and sub-millennial variability, including Dansgaard-Oeschger and Heinrich events. There are numerous theories about theses oscillations. Here, we review a number of them in order to draw a parallel between climatic concepts and dynamical system concepts, including, in particular, the relaxation oscillator, excitability, slow-fast dynamics and homoclinic orbits. Namely, almost all theories of ice ages reviewed here feature a phenomenon of synchronisation between internal climate dynamics and the astronomical forcing. However, these theories differ in their bifurcation structure and this has an effect on the way the ice age phenomenon could grow 3 million years ago. All theories on rapid events reviewed here rely on the concept of a limit cycle in the ocean circulation, which may be excited by changes in the surface freshwater surface balance. The article also reviews basic effects of stochastic fluctuations on these models, including the phenomenon of phase dispersion, shortening of the limit cycle and stochastic resonance. It concludes with a more personal statement about the potential for inference with simple stochastic dynamical systems in palaeoclimate science. Keywords: palaeoclimates, dynamical systems, limit cycle, ice ages, Dansgaard-Oeschger eventsComment: Published in the Transactions of the Philosophical Transactions of the Royal Society (Series A, Physical Mathematical and Engineering Sciences), as a contribution to the Proceedings of the workshop on Stochastic Methods in Climate Modelling, Newton Institute (23-27 August). Philosophical Transactions of the Royal Society (Series A, Physical Mathematical and Engineering Sciences), vol. 370, pp. xx-xx (2012); Source codes available on request to author and on http://www.uclouvain.be/ito

    The GROUSE project II: Detection of the Ks-band secondary eclipse of exoplanet HAT-P-1b

    Full text link
    Context: Only recently it has become possible to measure the thermal emission from hot-Jupiters at near-Infrared wavelengths using ground-based telescopes, by secondary eclipse observations. This allows the planet flux to be probed around the peak of its spectral energy distribution, which is vital for the understanding of its energy budget. Aims: The aim of the reported work is to measure the eclipse depth of the planet HAT-P-1b at 2.2micron. This planet is an interesting case, since the amount of stellar irradiation it receives falls in between that of the two best studied systems (HD209458 and HD189733), and it has been suggested to have a weak thermal inversion layer. Methods: We have used the LIRIS instrument on the William Herschel Telescope (WHT) to observe the secondary eclipse of HATP-1b in the Ks-band, as part of our Ground-based secondary eclipse (GROUSE) project. The observations were done in staring mode, while significantly defocusing the telescope to avoid saturation on the K=8.4 star. With an average cadence of 2.5 seconds, we collected 6520 frames during one night. Results: The eclipse is detected at the 4sigma level, the measured depth being 0.109+/-0.025%. The uncertainties are dominated by residual systematic effects, as estimated from different reduction/analysis procedures. The measured depth corresponds to a brightness temperature of 2136+150-170K. This brightness temperature is significantly higher than those derived from longer wavelengths, making it difficult to fit all available data points with a plausible atmospheric model. However, it may be that we underestimate the true uncertainties of our measurements, since it is notoriously difficult to assign precise statistical significance to a result when systematic effects are important.Comment: 7 pages, 10 figures, Accepted for publication in A&

    High Resolution, Differential, Near-infrared Transmission Spectroscopy of GJ 1214b

    Full text link
    The nearby star GJ 1214 hosts a planet intermediate in radius and mass between Earth and Neptune, resulting in some uncertainty as to its nature. We have observed this planet, GJ 1214b, during transit with the high-resolution, near-infrared NIRSPEC spectrograph on the Keck II telescope, in order to characterize the planet's atmosphere. By cross-correlating the spectral changes through transit with a suite of theoretical atmosphere models, we search for variations associated with absorption in the planet atmosphere. Our observations are sufficient to rule out tested model atmospheres with wavelength-dependent transit depth variations >5e-4 over the wavelength range 2.1 - 2.4 micron. Our sensitivity is limited by variable slit loss and telluric transmission effects. We find no positive signatures but successfully rule out a number of plausible atmospheric models, including the default assumption of a gaseous, H-dominated atmosphere in chemical equilibrium. Such an atmosphere can be made consistent if the absorption due to methane is reduced. Clouds can also render such an atmosphere consistent with our observations, but only if they lie higher in the atmosphere than indicated by recent optical and infrared measurements. When taken in concert with constraints from other groups, our results support a consensus model in which the atmosphere of GJ 1214b contains significant H and He, but where methane is depleted. If this depletion is the result of photochemical processes, it may also produce a haze that suppresses spectral features in the optical.Comment: 32 pages, 15 figures, preprint, accepted to ApJ, responded to referee's comments. Comments welcom

    Multiwavelength transit observations of the candidate disintegrating planetesimals orbiting WD 1145+017

    Full text link
    We present multiwavelength, ground-based follow-up photometry of the white dwarf WD 1145+017, which has recently been suggested to be orbited by up to six or more short-period, low-mass, disintegrating planetesimals. We detect nine significant dips in flux of between 10% and 30% of the stellar flux in our ~32 hr of photometry, suggesting that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the asymmetric transits that we observe, we confirm that the transit egress is usually longer than the ingress, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals are unclear, but at least one object, and likely more, have orbital periods of ~4.5 hr. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high-precision photometry also displays low-amplitude variations, suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. We compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions, the radius of single-size particles in the cometary tails streaming behind the planetesimals must be ~0.15 μm or larger, or ~0.06 μm or smaller, with 2σ confidence

    Use of Statecharts in the Modeling of Dynamic Behavior in the ATLAS Daq Prototype-1

    Get PDF

    Evidence for Eccentric, Precessing Gaseous Debris in the Circumstellar Absorption toward WD 1145 + 017

    Get PDF
    We present time-series spectra revealing changes in the circumstellar line profiles for the white dwarf WD 1145 + 017. Over the course of 2.2 years, the spectra show complete velocity reversals in the circumstellar absorption, moving from strongly redshifted in 2015 April to strongly blueshifted in 2017 June. The depth of the absorption also varies, increasing by a factor of two over the same period. The dramatic changes in the line profiles are consistent with eccentric circumstellar gas rings undergoing general relativistic precession. As the argument of periapsis of the rings changes relative to the line of sight, the transiting gas shifts from receding in 2016 to approaching in 2017. Based on the precession timescales in the favored model, we make predictions for the line profiles over the next few years. Spectroscopic monitoring of WD 1145 + 017 will test these projections and aid in developing more accurate white dwarf accretion disk models

    Electrical vestibular stimulation in humans. A narrative review

    Get PDF
    Background: In patients with bilateral vestibulopathy, the regular treatment options, such as medication, surgery, and/ or vestibular rehabilitation, do not always suffice. Therefore, the focus in this field of vestibular research shifted to electri- cal vestibular stimulation (EVS) and the development of a system capable of artificially restoring the vestibular func- tion. Key Message: Currently, three approaches are being investigated: vestibular co-stimulation with a cochlear im- plant (CI), EVS with a vestibular implant (VI), and galvanic vestibular stimulation (GVS). All three applications show promising results but due to conceptual differences and the experimental state, a consensus on which application is the most ideal for which type of patient is still missing. Summa- ry: Vestibular co-stimulation with a CI is based on “spread of excitation,” which is a phenomenon that occurs when the currents from the CI spread to the surrounding structures and stimulate them. It has been shown that CI activation can indeed result in stimulation of the vestibular structures. Therefore, the question was raised whether vestibular co- stimulation can be functionally used in patients with bilat- eral vestibulopathy. A more direct vestibular stimulation method can be accomplished by implantation and activa- tion of a VI. The concept of the VI is based on the technology and principles of the CI. Different VI prototypes are currently being evaluated regarding feasibility and functionality. So far, all of them were capable of activating different types of vestibular reflexes. A third stimulation method is GVS, which requires the use of surface electrodes instead of an implant- ed electrode array. However, as the currents are sent through the skull from one mastoid to the other, GVS is rather unspe- cific. It should be mentioned though, that the reported spread of excitation in both CI and VI use also seems to in- duce a more unspecific stimulation. Although all three ap- plications of EVS were shown to be effective, it has yet to be defined which option is more desirable based on applicabil- ity and efficiency. It is possible and even likely that there is a place for all three approaches, given the diversity of the pa- tient population who serves to gain from such technologies
    corecore