1,564 research outputs found
Kepler Transit Depths Contaminated by a Phantom Star
We present ground-based observations from the Discovery Channel Telescope
(DCT) of three transits of Kepler-445c---a supposed super-Earth exoplanet with
properties resembling GJ 1214b---and demonstrate that the transit depth is
approximately 50 percent shallower than the depth previously inferred from
Kepler Spacecraft data. The resulting decrease in planetary radius
significantly alters the interpretation of the exoplanet's bulk composition.
Despite the faintness of the M4 dwarf host star, our ground-based photometry
clearly recovers each transit and achieves repeatable 1-sigma precision of
approximately 0.2 percent (2 millimags). The transit parameters estimated from
the DCT data are discrepant with those inferred from the Kepler data to at
least 17-sigma confidence. This inconsistency is due to a subtle miscalculation
of the stellar crowding metric during the Kepler pre-search data conditioning
(PDC). The crowding metric, or CROWDSAP, is contaminated by a non-existent
"phantom star" originating in the USNO-B1 catalog and inherited by the Kepler
Input Catalog (KIC). Phantom stars in the KIC are likely rare, but they have
the potential to affect statistical studies of Kepler targets that use the PDC
transit depths for a large number of exoplanets where individual follow-up
observation of each is not possible. The miscalculation of Kepler-445c's
transit depth emphasizes the importance of stellar crowding in the Kepler data,
and provides a cautionary tale for the analysis of data from the Transiting
Exoplanet Survey Satellite (TESS), which will have even larger pixels than
Kepler.Comment: 11 pages, 10 figures, 5 tables. Accepted for publication in AJ.
Transit light curves will be available from AJ as Db
Long-term, multiwavelength light curves of ultra-cool dwarfs: II. The evolving light curves of the T2. 5 SIMP 0136 & the uncorrelated light curves of the M9 TVLM 513
We present multiwavelength, multi-telescope, ground-based follow-up photometry of the white dwarf WD 1145+017, that has recently been suggested to be orbited by up to six or more, short-period, low- mass, disintegrating planetesimals. We detect 9 significant dips in flux of between 10% and 30% of the stellar flux from our ground-based photometry. We observe transits deeper than 10% on average every ∼3.6 hr in our photometry. This suggests that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the multiple asymmetric transits that we observe, we confirm that the transit egress timescale is usually longer than the ingress timescale, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals in this system are unclear from the transit-times, but at least one object, and likely more, have orbital periods of ∼4.5 hours. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high precision photometry also displays low amplitude variations suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. For the significant transits we observe, we compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions the radius of single-size particles in the cometary tails streaming behind the planetesimals in this system must be ∼0.15 μm or larger, or ∼0.06 μm or smaller, with 2σ confidence
Oscillators and relaxation phenomena in Pleistocene climate theory
Ice sheets appeared in the northern hemisphere around 3 million years ago and
glacial-interglacial cycles have paced Earth's climate since then. Superimposed
on these long glacial cycles comes an intricate pattern of millennial and
sub-millennial variability, including Dansgaard-Oeschger and Heinrich events.
There are numerous theories about theses oscillations. Here, we review a number
of them in order to draw a parallel between climatic concepts and dynamical
system concepts, including, in particular, the relaxation oscillator,
excitability, slow-fast dynamics and homoclinic orbits. Namely, almost all
theories of ice ages reviewed here feature a phenomenon of synchronisation
between internal climate dynamics and the astronomical forcing. However, these
theories differ in their bifurcation structure and this has an effect on the
way the ice age phenomenon could grow 3 million years ago. All theories on
rapid events reviewed here rely on the concept of a limit cycle in the ocean
circulation, which may be excited by changes in the surface freshwater surface
balance. The article also reviews basic effects of stochastic fluctuations on
these models, including the phenomenon of phase dispersion, shortening of the
limit cycle and stochastic resonance. It concludes with a more personal
statement about the potential for inference with simple stochastic dynamical
systems in palaeoclimate science.
Keywords: palaeoclimates, dynamical systems, limit cycle, ice ages,
Dansgaard-Oeschger eventsComment: Published in the Transactions of the Philosophical Transactions of
the Royal Society (Series A, Physical Mathematical and Engineering Sciences),
as a contribution to the Proceedings of the workshop on Stochastic Methods in
Climate Modelling, Newton Institute (23-27 August). Philosophical
Transactions of the Royal Society (Series A, Physical Mathematical and
Engineering Sciences), vol. 370, pp. xx-xx (2012); Source codes available on
request to author and on http://www.uclouvain.be/ito
The GROUSE project II: Detection of the Ks-band secondary eclipse of exoplanet HAT-P-1b
Context: Only recently it has become possible to measure the thermal emission
from hot-Jupiters at near-Infrared wavelengths using ground-based telescopes,
by secondary eclipse observations. This allows the planet flux to be probed
around the peak of its spectral energy distribution, which is vital for the
understanding of its energy budget. Aims: The aim of the reported work is to
measure the eclipse depth of the planet HAT-P-1b at 2.2micron. This planet is
an interesting case, since the amount of stellar irradiation it receives falls
in between that of the two best studied systems (HD209458 and HD189733), and it
has been suggested to have a weak thermal inversion layer. Methods: We have
used the LIRIS instrument on the William Herschel Telescope (WHT) to observe
the secondary eclipse of HATP-1b in the Ks-band, as part of our Ground-based
secondary eclipse (GROUSE) project. The observations were done in staring mode,
while significantly defocusing the telescope to avoid saturation on the K=8.4
star. With an average cadence of 2.5 seconds, we collected 6520 frames during
one night. Results: The eclipse is detected at the 4sigma level, the measured
depth being 0.109+/-0.025%. The uncertainties are dominated by residual
systematic effects, as estimated from different reduction/analysis procedures.
The measured depth corresponds to a brightness temperature of 2136+150-170K.
This brightness temperature is significantly higher than those derived from
longer wavelengths, making it difficult to fit all available data points with a
plausible atmospheric model. However, it may be that we underestimate the true
uncertainties of our measurements, since it is notoriously difficult to assign
precise statistical significance to a result when systematic effects are
important.Comment: 7 pages, 10 figures, Accepted for publication in A&
High Resolution, Differential, Near-infrared Transmission Spectroscopy of GJ 1214b
The nearby star GJ 1214 hosts a planet intermediate in radius and mass
between Earth and Neptune, resulting in some uncertainty as to its nature. We
have observed this planet, GJ 1214b, during transit with the high-resolution,
near-infrared NIRSPEC spectrograph on the Keck II telescope, in order to
characterize the planet's atmosphere. By cross-correlating the spectral changes
through transit with a suite of theoretical atmosphere models, we search for
variations associated with absorption in the planet atmosphere. Our
observations are sufficient to rule out tested model atmospheres with
wavelength-dependent transit depth variations >5e-4 over the wavelength range
2.1 - 2.4 micron. Our sensitivity is limited by variable slit loss and telluric
transmission effects.
We find no positive signatures but successfully rule out a number of
plausible atmospheric models, including the default assumption of a gaseous,
H-dominated atmosphere in chemical equilibrium. Such an atmosphere can be made
consistent if the absorption due to methane is reduced. Clouds can also render
such an atmosphere consistent with our observations, but only if they lie
higher in the atmosphere than indicated by recent optical and infrared
measurements.
When taken in concert with constraints from other groups, our results support
a consensus model in which the atmosphere of GJ 1214b contains significant H
and He, but where methane is depleted. If this depletion is the result of
photochemical processes, it may also produce a haze that suppresses spectral
features in the optical.Comment: 32 pages, 15 figures, preprint, accepted to ApJ, responded to
referee's comments. Comments welcom
Multiwavelength transit observations of the candidate disintegrating planetesimals orbiting WD 1145+017
We present multiwavelength, ground-based follow-up photometry of the white dwarf WD 1145+017, which has recently been suggested to be orbited by up to six or more short-period, low-mass, disintegrating planetesimals. We detect nine significant dips in flux of between 10% and 30% of the stellar flux in our ~32 hr of photometry, suggesting that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the asymmetric transits that we observe, we confirm that the transit egress is usually longer than the ingress, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals are unclear, but at least one object, and likely more, have orbital periods of ~4.5 hr. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high-precision photometry also displays low-amplitude variations, suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. We compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions, the radius of single-size particles in the cometary tails streaming behind the planetesimals must be ~0.15 μm or larger, or ~0.06 μm or smaller, with 2σ confidence
Evidence for Eccentric, Precessing Gaseous Debris in the Circumstellar Absorption toward WD 1145 + 017
We present time-series spectra revealing changes in the circumstellar line profiles for the white dwarf WD 1145 + 017. Over the course of 2.2 years, the spectra show complete velocity reversals in the circumstellar absorption, moving from strongly redshifted in 2015 April to strongly blueshifted in 2017 June. The depth of the absorption also varies, increasing by a factor of two over the same period. The dramatic changes in the line profiles are consistent with eccentric circumstellar gas rings undergoing general relativistic precession. As the argument of periapsis of the rings changes relative to the line of sight, the transiting gas shifts from receding in 2016 to approaching in 2017. Based on the precession timescales in the favored model, we make predictions for the line profiles over the next few years. Spectroscopic monitoring of WD 1145 + 017 will test these projections and aid in developing more accurate white dwarf accretion disk models
Electrical vestibular stimulation in humans. A narrative review
Background: In patients with bilateral vestibulopathy, the
regular treatment options, such as medication, surgery, and/
or vestibular rehabilitation, do not always suffice. Therefore,
the focus in this field of vestibular research shifted to electri-
cal vestibular stimulation (EVS) and the development of a
system capable of artificially restoring the vestibular func-
tion. Key Message: Currently, three approaches are being
investigated: vestibular co-stimulation with a cochlear im-
plant (CI), EVS with a vestibular implant (VI), and galvanic
vestibular stimulation (GVS). All three applications show
promising results but due to conceptual differences and the
experimental state, a consensus on which application is the
most ideal for which type of patient is still missing. Summa-
ry: Vestibular co-stimulation with a CI is based on “spread of
excitation,” which is a phenomenon that occurs when the
currents from the CI spread to the surrounding structures
and stimulate them. It has been shown that CI activation can
indeed result in stimulation of the vestibular structures.
Therefore, the question was raised whether vestibular co-
stimulation can be functionally used in patients with bilat-
eral vestibulopathy. A more direct vestibular stimulation
method can be accomplished by implantation and activa-
tion of a VI. The concept of the VI is based on the technology
and principles of the CI. Different VI prototypes are currently
being evaluated regarding feasibility and functionality. So
far, all of them were capable of activating different types of
vestibular reflexes. A third stimulation method is GVS, which
requires the use of surface electrodes instead of an implant-
ed electrode array. However, as the currents are sent through
the skull from one mastoid to the other, GVS is rather unspe-
cific. It should be mentioned though, that the reported
spread of excitation in both CI and VI use also seems to in-
duce a more unspecific stimulation. Although all three ap-
plications of EVS were shown to be effective, it has yet to be
defined which option is more desirable based on applicabil-
ity and efficiency. It is possible and even likely that there is a
place for all three approaches, given the diversity of the pa-
tient population who serves to gain from such technologies
- …
