5,831 research outputs found
Evaluation of a high temperature adhesive for fabricating graphite/PMR-15 polyimide structures
Tests are conducted to measure shear strength, shear modulus and flatwise tensile strength of the A7F (amide-imide modified LARC-13) adhesive system. An investigation is also conducted to determine the effect of geometric material parameters, and elevated temperature on the static strength of standard joints. Single-lap and double-lap composite joints, and single, double and step lap composite to metal joints are characterized. A series of advanced joints consisting of preformed adherends, adherends with scalloped edges and joints with hybrid interface plies are tested and compared to baseline single and double-lap designs
Design, fabrication and test of graphite/polyimide composite joints and attachments
The design, analysis, and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561 K (550 F) are summarized. Material properties and small specimen tests were conducted to establish design data and to evaluate specific design details. Static discriminator tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours at 589 K (600 F)) and thermal cycled (116 K to 589 K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589 K (600 F) for 125 hours
A Cantor set of tori with monodromy near a focus-focus singularity
We write down an asymptotic expression for action coordinates in an
integrable Hamiltonian system with a focus-focus equilibrium. From the
singularity in the actions we deduce that the Arnol'd determinant grows
infinitely large near the pinched torus. Moreover, we prove that it is possible
to globally parametrise the Liouville tori by their frequencies. If one
perturbs this integrable system, then the KAM tori form a Whitney smooth
family: they can be smoothly interpolated by a torus bundle that is
diffeomorphic to the bundle of Liouville tori of the unperturbed integrable
system. As is well-known, this bundle of Liouville tori is not trivial. Our
result implies that the KAM tori have monodromy. In semi-classical quantum
mechanics, quantisation rules select sequences of KAM tori that correspond to
quantum levels. Hence a global labeling of quantum levels by two quantum
numbers is not possible.Comment: 11 pages, 2 figure
Quantum integrability of quadratic Killing tensors
Quantum integrability of classical integrable systems given by quadratic
Killing tensors on curved configuration spaces is investigated. It is proven
that, using a "minimal" quantization scheme, quantum integrability is insured
for a large class of classic examples.Comment: LaTeX 2e, no figure, 35 p., references added, minor modifications. To
appear in the J. Math. Phy
Singular reduction of implicit Hamiltonian systems
This paper develops the reduction theory of implicit Hamiltonian systems
admitting a symmetry group at a singular value of the momentum map. The results
naturally extend those known for (explicit) Hamiltonian systems described by
Poisson brackets.Comment: 29 pages, no figures, submitte
Adiabatically coupled systems and fractional monodromy
We present a 1-parameter family of systems with fractional monodromy and
adiabatic separation of motion. We relate the presence of monodromy to a
redistribution of states both in the quantum and semi-quantum spectrum. We show
how the fractional monodromy arises from the non diagonal action of the
dynamical symmetry of the system and manifests itself as a generic property of
an important subclass of adiabatically coupled systems
Dynamics of the Tippe Top via Routhian Reduction
We consider a tippe top modeled as an eccentric sphere, spinning on a
horizontal table and subject to a sliding friction. Ignoring translational
effects, we show that the system is reducible using a Routhian reduction
technique. The reduced system is a two dimensional system of second order
differential equations, that allows an elegant and compact way to retrieve the
classification of tippe tops in six groups as proposed in [1] according to the
existence and stability type of the steady states.Comment: 16 pages, 7 figures, added reference. Typos corrected and a forgotten
term in de linearized system is adde
The Non-Trapping Degree of Scattering
We consider classical potential scattering. If no orbit is trapped at energy
E, the Hamiltonian dynamics defines an integer-valued topological degree. This
can be calculated explicitly and be used for symbolic dynamics of
multi-obstacle scattering.
If the potential is bounded, then in the non-trapping case the boundary of
Hill's Region is empty or homeomorphic to a sphere.
We consider classical potential scattering. If at energy E no orbit is
trapped, the Hamiltonian dynamics defines an integer-valued topological degree
deg(E) < 2. This is calculated explicitly for all potentials, and exactly the
integers < 2 are shown to occur for suitable potentials.
The non-trapping condition is restrictive in the sense that for a bounded
potential it is shown to imply that the boundary of Hill's Region in
configuration space is either empty or homeomorphic to a sphere.
However, in many situations one can decompose a potential into a sum of
non-trapping potentials with non-trivial degree and embed symbolic dynamics of
multi-obstacle scattering. This comprises a large number of earlier results,
obtained by different authors on multi-obstacle scattering.Comment: 25 pages, 1 figure Revised and enlarged version, containing more
detailed proofs and remark
Non-integrability of the mixmaster universe
We comment on an analysis by Contopoulos et al. which demonstrates that the
governing six-dimensional Einstein equations for the mixmaster space-time
metric pass the ARS or reduced Painlev\'{e} test. We note that this is the case
irrespective of the value, , of the generating Hamiltonian which is a
constant of motion. For we find numerous closed orbits with two
unstable eigenvalues strongly indicating that there cannot exist two additional
first integrals apart from the Hamiltonian and thus that the system, at least
for this case, is very likely not integrable. In addition, we present numerical
evidence that the average Lyapunov exponent nevertheless vanishes. The model is
thus a very interesting example of a Hamiltonian dynamical system, which is
likely non-integrable yet passes the reduced Painlev\'{e} test.Comment: 11 pages LaTeX in J.Phys.A style (ioplppt.sty) + 6 PostScript figures
compressed and uuencoded with uufiles. Revised version to appear in J Phys.
- …
