5,831 research outputs found

    Evaluation of a high temperature adhesive for fabricating graphite/PMR-15 polyimide structures

    Get PDF
    Tests are conducted to measure shear strength, shear modulus and flatwise tensile strength of the A7F (amide-imide modified LARC-13) adhesive system. An investigation is also conducted to determine the effect of geometric material parameters, and elevated temperature on the static strength of standard joints. Single-lap and double-lap composite joints, and single, double and step lap composite to metal joints are characterized. A series of advanced joints consisting of preformed adherends, adherends with scalloped edges and joints with hybrid interface plies are tested and compared to baseline single and double-lap designs

    Design, fabrication and test of graphite/polyimide composite joints and attachments

    Get PDF
    The design, analysis, and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561 K (550 F) are summarized. Material properties and small specimen tests were conducted to establish design data and to evaluate specific design details. Static discriminator tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours at 589 K (600 F)) and thermal cycled (116 K to 589 K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589 K (600 F) for 125 hours

    A Cantor set of tori with monodromy near a focus-focus singularity

    Full text link
    We write down an asymptotic expression for action coordinates in an integrable Hamiltonian system with a focus-focus equilibrium. From the singularity in the actions we deduce that the Arnol'd determinant grows infinitely large near the pinched torus. Moreover, we prove that it is possible to globally parametrise the Liouville tori by their frequencies. If one perturbs this integrable system, then the KAM tori form a Whitney smooth family: they can be smoothly interpolated by a torus bundle that is diffeomorphic to the bundle of Liouville tori of the unperturbed integrable system. As is well-known, this bundle of Liouville tori is not trivial. Our result implies that the KAM tori have monodromy. In semi-classical quantum mechanics, quantisation rules select sequences of KAM tori that correspond to quantum levels. Hence a global labeling of quantum levels by two quantum numbers is not possible.Comment: 11 pages, 2 figure

    Quantum integrability of quadratic Killing tensors

    Get PDF
    Quantum integrability of classical integrable systems given by quadratic Killing tensors on curved configuration spaces is investigated. It is proven that, using a "minimal" quantization scheme, quantum integrability is insured for a large class of classic examples.Comment: LaTeX 2e, no figure, 35 p., references added, minor modifications. To appear in the J. Math. Phy

    Adiabatically coupled systems and fractional monodromy

    Get PDF
    We present a 1-parameter family of systems with fractional monodromy and adiabatic separation of motion. We relate the presence of monodromy to a redistribution of states both in the quantum and semi-quantum spectrum. We show how the fractional monodromy arises from the non diagonal action of the dynamical symmetry of the system and manifests itself as a generic property of an important subclass of adiabatically coupled systems

    Dynamics of the Tippe Top via Routhian Reduction

    Full text link
    We consider a tippe top modeled as an eccentric sphere, spinning on a horizontal table and subject to a sliding friction. Ignoring translational effects, we show that the system is reducible using a Routhian reduction technique. The reduced system is a two dimensional system of second order differential equations, that allows an elegant and compact way to retrieve the classification of tippe tops in six groups as proposed in [1] according to the existence and stability type of the steady states.Comment: 16 pages, 7 figures, added reference. Typos corrected and a forgotten term in de linearized system is adde

    The Non-Trapping Degree of Scattering

    Full text link
    We consider classical potential scattering. If no orbit is trapped at energy E, the Hamiltonian dynamics defines an integer-valued topological degree. This can be calculated explicitly and be used for symbolic dynamics of multi-obstacle scattering. If the potential is bounded, then in the non-trapping case the boundary of Hill's Region is empty or homeomorphic to a sphere. We consider classical potential scattering. If at energy E no orbit is trapped, the Hamiltonian dynamics defines an integer-valued topological degree deg(E) < 2. This is calculated explicitly for all potentials, and exactly the integers < 2 are shown to occur for suitable potentials. The non-trapping condition is restrictive in the sense that for a bounded potential it is shown to imply that the boundary of Hill's Region in configuration space is either empty or homeomorphic to a sphere. However, in many situations one can decompose a potential into a sum of non-trapping potentials with non-trivial degree and embed symbolic dynamics of multi-obstacle scattering. This comprises a large number of earlier results, obtained by different authors on multi-obstacle scattering.Comment: 25 pages, 1 figure Revised and enlarged version, containing more detailed proofs and remark

    Non-integrability of the mixmaster universe

    Full text link
    We comment on an analysis by Contopoulos et al. which demonstrates that the governing six-dimensional Einstein equations for the mixmaster space-time metric pass the ARS or reduced Painlev\'{e} test. We note that this is the case irrespective of the value, II, of the generating Hamiltonian which is a constant of motion. For I<0I < 0 we find numerous closed orbits with two unstable eigenvalues strongly indicating that there cannot exist two additional first integrals apart from the Hamiltonian and thus that the system, at least for this case, is very likely not integrable. In addition, we present numerical evidence that the average Lyapunov exponent nevertheless vanishes. The model is thus a very interesting example of a Hamiltonian dynamical system, which is likely non-integrable yet passes the reduced Painlev\'{e} test.Comment: 11 pages LaTeX in J.Phys.A style (ioplppt.sty) + 6 PostScript figures compressed and uuencoded with uufiles. Revised version to appear in J Phys.
    corecore