471 research outputs found
N-Methyl-D-aspartic Acid (NMDA) in the nervous system of the amphioxus Branchiostoma lanceolatum
<p>Abstract</p> <p>Background</p> <p>NMDA (<it>N</it>-methyl-D-aspartic acid) is a widely known agonist for a class of glutamate receptors, the NMDA type. Synthetic NMDA elicits very strong activity for the induction of hypothalamic factors and hypophyseal hormones in mammals. Moreover, endogenous NMDA has been found in rat, where it has a role in the induction of GnRH (Gonadotropin Releasing Hormone) in the hypothalamus, and of LH (Luteinizing Hormone) and PRL (Prolactin) in the pituitary gland.</p> <p>Results</p> <p>In this study we show evidence for the occurrence of endogenous NMDA in the amphioxus <it>Branchiostoma lanceolatum</it>. A relatively high concentration of NMDA occurs in the nervous system of this species (3.08 ± 0.37 nmol/g tissue in the nerve cord and 10.52 ± 1.41 nmol/g tissue in the cephalic vesicle). As in rat, in amphioxus NMDA is also biosynthesized from D-aspartic acid (D-Asp) by a NMDA synthase (also called D-aspartate methyl transferase).</p> <p>Conclusion</p> <p>Given the simplicity of the amphioxus nervous and endocrine systems compared to mammalian, the discovery of NMDA in this protochordate is important to gain insights into the role of endogenous NMDA in the nervous and endocrine systems of metazoans and particularly in the chordate lineage.</p
Looking at Socially Integrative Cities through the Educating City: The Example of Educational Museums in Europe and China
This contribution aims to show how the idea of an educating city can help to find effective ways of social integration capable of promoting the well-being of individuals and the community. In this direction, the concept of an educating city is adopted as a key to re-read the concept of a socially integrative city through an eminently educational perspective. The education channel, rethought through multiple learning initiatives capable of following alternative paths to those of school and university experiences (formal education), allows enhancing the human potential and wealth of knowledge and skills of the city, making all citizens protagonists and participants. In addressing this issue, a specific case study will be analyzed: educational museums. The aim is to show how the museum, as a non-formal education space and an expression of collective identity, can play an important role in connoting a city as an educating city. Specifically, both the European and Chinese realities will be examined to offer one of the possible insights into how the city is a reality in progress to be explored, which can grow and improve together with its citizens if you work in the direction of community education (Dewey) by rediscovering a place that, like museums, can contribute to enrich the social capital of a community.
ULTERIORI INFORMAZIONI: lo scrivente, F. d'Aniello, è autore del paragrafo Introduction: the Educating City: pp. 175-177
Opsin evolution in the Ambulacraria
Opsins - G-protein coupled receptors involved in photoreception - have been extensively studied in the animal kingdom. The present work provides new insights into opsin-based photoreception and photoreceptor cell evolution with a first analysis of opsin sequence data for a major deuterostome clade, the Ambulacraria. Systematic data analysis, including for the first time hemichordate opsin sequences and an expanded echinoderm dataset, led to a robust opsin phylogeny for this cornerstone superphylum. Multiple genomic and transcriptomic resources were surveyed to cover each class of Hemichordata and Echinodermata. In total, 119 ambulacrarian opsin sequences were found, 22 new sequences in hemichordates and 97 in echinoderms (including 67 new sequences). We framed the ambulacrarian opsin repertoire within eumetazoan diversity by including selected reference opsins from non-ambulacrarians. Our findings corroborate the presence of all major ancestral bilaterian opsin groups in Ambulacraria. Furthermore, we identified two opsin groups specific to echinoderms. In conclusion, a molecular phylogenetic framework for investigating light-perception and photobiological behaviors in marine deuterostomes has been obtained
Simultaneous onset of infantile spasms in monozygotic twins.
The clinical, electroencephalographic, and genetic
findings are reported for three pairs of monozygotic
twins who developed infantile spasms in their first
year. In all three pairs, the spasms started on the
same day in each member of the pair. Neither sequencing
of the ARX and CDKL5 (alias STK9) genes nor array
comparative genomic hybridization assessment
revealed any abnormalities. The long-term outcome
was poor in all twins, although with different severity
in individual pairs. These findings suggest that genes
other than those currently known likely play a role
in predisposition to infantile spasms, and that genetic
susceptibility is linked to a variable phenotypic expression,
ranging from quite benign to very severe, in
monozygotic twins with no other apparent risk
factors
Transphyletic conservation of developmental regulatory state in animal evolution
Specific regulatory states, i.e., sets of expressed transcription factors, define the gene expression capabilities of cells in animal development. Here we explore the functional significance of an unprecedented example of regulatory state conservation from the cnidarian Nematostella to Drosophila, sea urchin, fish, and mammals. Our probe is a deeply conserved cis-regulatory DNA module of the SRY-box B2 (soxB2), recognizable at the sequence level across many phyla. Transphyletic cis-regulatory DNA transfer experiments reveal that the plesiomorphic control function of this module may have been to respond to a regulatory state associated with neuronal differentiation. By introducing expression constructs driven by this module from any phyletic source into the genomes of diverse developing animals, we discover that the regulatory state to which it responds is used at different levels of the neurogenic developmental process, including patterning and development of the vertebrate forebrain and neurogenesis in the Drosophila optic lobe and brain. The regulatory state recognized by the conserved DNA sequence may have been redeployed to different levels of the developmental regulatory program during evolution of complex central nervous systems
Induction of Cytotoxic Oxidative Stress by d-Alanine in Brain Tumor Cells Expressing Rhodotorula gracilis d-Amino Acid Oxidase: A Cancer Gene Therapy Strategy
Overview summary Gene-directed enzyme prodrug therapy (GDEPT) is an antineoplastic treatment strategy designed to overcome the systemic toxicity of chemotherapy by specifically expressing a foreign enzyme in malignant cells that converts a nontoxic prodrug into a cytotoxic metabolite. The relative inefficiency of current in situ gene transfer methodology suggests that enzyme/prodrug combinations that produce membrane permeable metabolites will elicit a more favorable therapeutic response. Ideally, the agent produced by the transduced cell “factories” would be cytotoxic toward both proliferating and quiescent cells. We describe a novel GDEPT approach using d-amino acid oxidase from the red yeast Rhodotorula gracilis and d-alanine as a substrate that generates hydrogen peroxide, a reactive metabolite of oxygen that has both these characteristics. We also demonstrate the ability to sensitize tumor cells to this GDEPT protocol by manipulating cellular antioxidant pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63220/1/hum.1998.9.2-185.pd
Individual differences and knockout in zebrafish reveal similar cognitive effects of BDNF between teleosts and mammals
The remarkable similarities in cognitive performance between teleosts and mammals suggest that the underlying cognitive mechanisms might also be similar in these two groups. We tested this hypothesis by assessing the effects of the brain-derived neurotrophic factor (BDNF), which is critical for mammalian cognitive functioning, on fish's cognitive abilities. We found that individual differences in zebrafish's learning abilities were positively correlated with bdnf expression. Moreover, a CRISPR/Cas9 mutant zebrafish line that lacks the BDNF gene (bdnf(-/-)) showed remarkable learning deficits. Half of the mutants failed a colour discrimination task, whereas the remaining mutants learned the task slowly, taking three times longer than control bdnf(+/+) zebrafish. The mutants also took twice as long to acquire a T-maze task compared to control zebrafish and showed difficulties exerting inhibitory control. An analysis of habituation learning revealed that cognitive impairment in mutants emerges early during development, but could be rescued with a synthetic BDNF agonist. Overall, our study indicates that BDNF has a similar activational effect on cognitive performance in zebrafish and in mammals, supporting the idea that its function is conserved in vertebrates
Numerical modelling of masonry infill walls in existing steel frames
It is now widely recognised that masonry infill plays an essential role in the seismic behaviour of existing steel buildings; however, there is still a lack of clear guidance on the modelling of masonry infill in the current Eurocode 8-Part 3. Several methods for the numerical
modelling of masonry infills have been proposed in literature over the past few decades,
which either adopt a detailed approach (micro-model) or a simplified approach (macromodel). In the former case, bricks are individually modelled, taking into account the brickmortar cohesive interface, which is able to provide detailed insights of the behaviour of masonry infills and the frame-wall interaction but usually at a high computational cost. On the
other hand, a simplified model can be easily built within finite element software, most of
which replace the infill wall panel with one or more equivalent struts in the diagonal direction. It has been demonstrated that the strut models can simulate RC infilled structures’ global response with acceptable accuracy; however, there are still no adequate recommendations
for their modelling within steel frames. Besides, these models are generally incapable of capturing the interactions between the infills and the frame members. To this end, the present paper numerically investigates an Abaqus macro-model of the infilled steel frame, which was
experimentally tested as part of the recent SERA HITFRAMES project. The preliminary re-sults shows that the different detailing of steel frames could lead to different damage patterns
in the infill walls when compared to RC frames. In particular, instead of a single diagonal
strut, at most three struts were observed in this study. The results also suggested that the
number and geometry of struts could change with increasing displacement demands, hence it
might not be appropriate to use the same strut model for infill walls on different floors
Zebrafish, a novel model system to study uremic toxins: The case for the sulfur amino acid lanthionine
The non-proteinogenic amino acid lanthionine is a byproduct of hydrogen sulfide biosynthesis: the third endogenous vasodilator gas, after nitric oxide and carbon monoxide. While hydrogen sulfide is decreased in uremic patients on hemodialysis, lanthionine is increased and has been proposed as a new uremic toxin, since it is able to impair hydrogen sulfide production in hepatoma cells. To characterize lanthionine as a uremic toxin, we explored its effects during the early development of the zebrafish (Danio rerio), a widely used model to study the organ and tissue alterations induced by xenobiotics. Lanthionine was employed at concentrations reproducing those previously detected in uremia. Light-induced visual motor response was also studied by means of the DanioVision system. Treatment of zebrafish embryos with lanthionine determined acute phenotypical alterations, on heart organogenesis (disproportion in cardiac chambers), increased heart beating, and arrhythmia. Lanthionine also induced locomotor alterations in zebrafish embryos. Some of these effects could be counteracted by glutathione. Lanthionine exerted acute effects on transsulfuration enzymes and the expression of genes involved in inflammation and metabolic regulation, and modified microRNA expression in a way comparable with some alterations detected in uremia. Lanthionine meets the criteria for classification as a uremic toxin. Zebrafish can be successfully used to explore uremic toxin effects
- …
