15,931 research outputs found

    Applications of ISES for coastal zone studies

    Get PDF
    In contrast to the discipline- and process-oriented topics addressed, coastal zone studies are defined geographically by the special circumstances inherent in the interface between land and water. The characteristics of coastal zones which make them worthy of separate consideration are: (1) the dynamic nature of natural and anthropogenic processes taking place; (2) the relatively restricted spatial domain of the narrow land/water interface; and (3) the large proportion of the Earth's population living within coastal zones, and the resulting extreme pressure on natural and human resources. These characteristics place special constraints and priorities on remote sensing applications, even though the applications themselves bear close relation to those addressed by other elements of this report (e.g., oceans, ice, vegetation/land use). The discussion which follows first describes the suite of remote sensing activities relevant to coastal zone studies. Potential Information Sciences Experiment System (ISES) experiments will then be addressed within two general categories: applications of real-time data transmission and applications of onboard data acquisition and processing

    Bell's theorem without inequalities and without alignments

    Full text link
    A proof of Bell's theorem without inequalities is presented which exhibits three remarkable properties: (a) reduced local states are immune to collective decoherence; (b) distant local setups do not need to be aligned, since the required perfect correlations are achieved for any local rotation of the local setups; (c) local measurements require only individual measurements on the qubits. Indeed, it is shown that this proof is essentially the only one which fulfils (a), (b), and (c).Comment: REVTeX4, 4 page

    Optical spin-1 chain and its use as a quantum computational wire

    Full text link
    Measurement-based quantum computing, a powerful alternative to the standard circuit model, proceeds using only local adaptive measurements on a highly-entangled resource state of many spins on a graph or lattice. Along with the canonical cluster state, the valence-bond solid ground state on a chain of spin-1 particles, studied by Affleck, Kennedy, Lieb, and Tasaki (AKLT), is such a resource state. We propose a simulation of this AKLT state using linear optics, wherein we can make use of the high-fidelity projective measurements that are commonplace in quantum optical experiments, and describe how quantum logic gates can be performed on this chain. In our proposed implementation, the spin-1 particles comprizing the AKLT state are encoded on polarization biphotons: three level systems consisting of pairs of polarized photons in the same spatio-temporal mode. A logical qubit encoded on the photonic AKLT state can be initialized, read out and have an arbitrary single qubit unitary applied to it by performing projective measurements on the constituent biphotons. For MBQC, biphoton measurements are required which cannot be deterministically performed using only linear optics and photodetection.Comment: 9 pages, 4 figures, published versio

    Randomized benchmarking in measurement-based quantum computing

    Get PDF
    Randomized benchmarking is routinely used as an efficient method for characterizing the performance of sets of elementary logic gates in small quantum devices. In the measurement-based model of quantum computation, logic gates are implemented via single-site measurements on a fixed universal resource state. Here we adapt the randomized benchmarking protocol for a single qubit to a linear cluster state computation, which provides partial, yet efficient characterization of the noise associated with the target gate set. Applying randomized benchmarking to measurement-based quantum computation exhibits an interesting interplay between the inherent randomness associated with logic gates in the measurement-based model and the random gate sequences used in benchmarking. We consider two different approaches: the first makes use of the standard single-qubit Clifford group, while the second uses recently introduced (non-Clifford) measurement-based 2-designs, which harness inherent randomness to implement gate sequences.Comment: 10 pages, 4 figures, comments welcome; v2 published versio

    Investigation, Testing, and Selection of Slip-ring Lead Wires for Use in High-precision Slip-ring Capsules Final Report

    Get PDF
    Evaluation of corrosion resistant silver alloys for use in lead wires for slip-ring assemblies of Saturn guidance and control system

    Quantum communication using a bounded-size quantum reference frame

    Full text link
    Typical quantum communication schemes are such that to achieve perfect decoding the receiver must share a reference frame with the sender. Indeed, if the receiver only possesses a bounded-size quantum token of the sender's reference frame, then the decoding is imperfect, and we can describe this effect as a noisy quantum channel. We seek here to characterize the performance of such schemes, or equivalently, to determine the effective decoherence induced by having a bounded-size reference frame. We assume that the token is prepared in a special state that has particularly nice group-theoretic properties and that is near-optimal for transmitting information about the sender's frame. We present a decoding operation, which can be proven to be near-optimal in this case, and we demonstrate that there are two distinct ways of implementing it (corresponding to two distinct Kraus decompositions). In one, the receiver measures the orientation of the reference frame token and reorients the system appropriately. In the other, the receiver extracts the encoded information from the virtual subsystems that describe the relational degrees of freedom of the system and token. Finally, we provide explicit characterizations of these decoding schemes when the system is a single qubit and for three standard kinds of reference frame: a phase reference, a Cartesian frame (representing an orthogonal triad of spatial directions), and a reference direction (representing a single spatial direction).Comment: 17 pages, 1 figure, comments welcome; v2 published versio

    Editorial: The full spectrum of risk in urban centres: changing perceptions, changing priorities

    Get PDF
    In many urban centres in the global South, there is little or no information on either the scale or the causes of premature death, serious injury, illness or impoverishment. In sub-Saharan Africa, this is the case for most urban centres. Even where there may be some information, it is seldom available for every district in the city. We get some sense of the scale of these issues from household surveys (such as the Demographic and Health Surveys), which show very high infant, child and maternal mortality rates “for urban areas” in many African and Asian nations.(1) But for practical action this kind of information is needed for every ward or district – on what the problems are, where they are and who is most impacted. Civil servants, politicians and civil society groups working at neighbourhood, ward, district and city levels may have some sense, based on their experience, of what the concerns are within their jurisdictions. But without data to present to higher-ups, it can be difficult to get proper action in response. The availability of data is worst of all for informal settlements – despite the fact that they often house more than half of a city’s population. In Nairobi, the African Population and Health Research Center (APHRC) has shown that aggregate figures for infant and under-5 mortality rates for the city hide the much higher rates in informal settlements.(2) But this kind of information is needed everywhere, and there is in general scant documentation of the serious risks faced by the billion or so urban dwellers who live in informal settlements

    Dynamics of a Quantum Reference Frame

    Get PDF
    We analyze a quantum mechanical gyroscope which is modeled as a large spin and used as a reference against which to measure the angular momenta of spin-1/2 particles. These measurements induce a back-action on the reference which is the central focus of our study. We begin by deriving explicit expressions for the quantum channel representing the back-action. Then, we analyze the dynamics incurred by the reference when it is used to sequentially measure particles drawn from a fixed ensemble. We prove that the reference thermalizes with the measured particles and find that generically, the thermal state is reached in time which scales linearly with the size of the reference. This contrasts a recent conclusion of Bartlett et al. that this takes a quadratic amount of time when the particles are completely unpolarized. We now understand their result in terms of a simple physical principle based on symmetries and conservation laws. Finally, we initiate the study of the non-equilibrium dynamics of the reference. Here we find that a reference in a coherent state will essentially remain in one when measuring polarized particles, while rotating itself to ultimately align with the polarization of the particles
    corecore