2,597 research outputs found
Reply on the ``Comment on `Loss-error compensation in quantum- state measurements' ''
The authors of the Comment [G. M. D'Ariano and C. Macchiavello to be
published in Phys. Rev. A, quant-ph/9701009] tried to reestablish a 0.5
efficiency bound for loss compensation in optical homodyne tomography. In our
reply we demonstrate that neither does such a rigorous bound exist nor is the
bound required for ruling out the state reconstruction of an individual system
[G. M. D'Ariano and H. P. Yuen, Phys. Rev. Lett. 76, 2832 (1996)].Comment: LaTex, 2 pages, 1 Figure; to be published in Physical Review
Quantum levitation by left-handed metamaterials
Left-handed metamaterials make perfect lenses that image classical
electromagnetic fields with significantly higher resolution than the
diffraction limit. Here we consider the quantum physics of such devices. We
show that the Casimir force of two conducting plates may turn from attraction
to repulsion if a perfect lens is sandwiched between them. For optical
left-handed metamaterials this repulsive force of the quantum vacuum may
levitate ultra-thin mirrors
The sonic analogue of black hole radiation
A microscopic description of Hawking radiation in sonic black holes has been
recently presented (Giovanazzi S 2005 Phys. Rev. Lett. 94 061302). This exactly
solvable model is formulated in terms of one-dimensional scattering of a Fermi
gas. In this paper, the model is extended to account possible finite size
effects of a realistic geometry. The flow of particles is maintained by a
piston (i.e. an impenetrable barrier) moving slowly towards the sonic horizon.
Using existing technologies the Hawking temperature can be of order of a few
microkelvin in a realistic experiment.Comment: 14 pages, 7 figures, submitted to Journal of Physics B: Atomic,
Molecular & Optical Physic
Measuring Polynomial Invariants of Multi-Party Quantum States
We present networks for directly estimating the polynomial invariants of
multi-party quantum states under local transformations. The structure of these
networks is closely related to the structure of the invariants themselves and
this lends a physical interpretation to these otherwise abstract mathematical
quantities. Specifically, our networks estimate the invariants under local
unitary (LU) transformations and under stochastic local operations and
classical communication (SLOCC). Our networks can estimate the LU invariants
for multi-party states, where each party can have a Hilbert space of arbitrary
dimension and the SLOCC invariants for multi-qubit states. We analyze the
statistical efficiency of our networks compared to methods based on estimating
the state coefficients and calculating the invariants.Comment: 8 pages, 4 figures, RevTex4, v2 references update
Pulsed squeezed vacuum characterization without homodyning
Direct photon detection is experimentally implemented to measure the
squeezing and purity of a single-mode squeezed vacuum state without an
interferometric homodyne detection. Following a recent theoretical proposal
[arXiv quant-ph/0311119], the setup only requires a tunable beamsplitter and a
single-photon detector to fully characterize the generated Gaussian states. The
experimental implementation of this procedure is discussed and compared with
other reference methods.Comment: 8 pages, 7 figure
Conditions for one-dimensional supersonic flow of quantum gases
One can use transsonic Bose-Einstein condensates of alkali atoms to establish
the laboratory analog of the event horizon and to measure the acoustic version
of Hawking radiation. We determine the conditions for supersonic flow and the
Hawking temperature for realistic condensates on waveguides where an external
potential plays the role of a supersonic nozzle. The transition to supersonic
speed occurs at the potential maximum and the Hawking temperature is entirely
determined by the curvature of the potential
Constrained MaxLik reconstruction of multimode photon distributions
We address the reconstruction of the full photon distribution of multimode
fields generated by seeded parametric down-conversion (PDC). Our scheme is
based on on/off avalanche photodetection assisted by maximum-likelihood
(MaxLik) estimation and does not involve photon counting. We present a novel
constrained MaxLik method that incorporates the request of finite energy to
improve the rate of convergence and, in turn, the overall accuracy of the
reconstruction
Operational Theory of Homodyne Detection
We discuss a balanced homodyne detection scheme with imperfect detectors in
the framework of the operational approach to quantum measurement. We show that
a realistic homodyne measurement is described by a family of operational
observables that depends on the experimental setup, rather than a single field
quadrature operator. We find an explicit form of this family, which fully
characterizes the experimental device and is independent of a specific state of
the measured system. We also derive operational homodyne observables for the
setup with a random phase, which has been recently applied in an ultrafast
measurement of the photon statistics of a pulsed diode laser. The operational
formulation directly gives the relation between the detected noise and the
intrinsic quantum fluctuations of the measured field. We demonstrate this on
two examples: the operational uncertainty relation for the field quadratures,
and the homodyne detection of suppressed fluctuations in photon statistics.Comment: 7 pages, REVTe
Transverse Fresnel-Fizeau drag effects in strongly dispersive media
A light beam normally incident upon an uniformly moving dielectric medium is
in general subject to bendings due to a transverse Fresnel-Fizeau light drag
effect. In conventional dielectrics, the magnitude of this bending effect is
very small and hard to detect. Yet, it can be dramatically enhanced in strongly
dispersive media where slow group velocities in the m/s range have been
recently observed taking advantage of the electromagnetically induced
transparency (EIT) effect. In addition to the usual downstream drag that takes
place for positive group velocities, we predict a significant anomalous
upstream drag to occur for small and negative group velocities. Furthermore,
for sufficiently fast speeds of the medium, higher order dispersion terms are
found to play an important role and to be responsible for peculiar effects such
as light propagation along curved paths and the restoration of the spatial
coherence of an incident noisy beam. The physics underlying this new class of
slow-light effects is thoroughly discussed
Sampling functions for multimode homodyne tomography with a single local oscillator
We derive various sampling functions for multimode homodyne tomography with a
single local oscillator. These functions allow us to sample multimode
s-parametrized quasidistributions, density matrix elements in Fock basis, and
s-ordered moments of arbitrary order directly from the measured quadrature
statistics. The inevitable experimental losses can be compensated by proper
modification of the sampling functions. Results of Monte Carlo simulations for
squeezed three-mode state are reported and the feasibility of reconstruction of
the three-mode Q-function and s-ordered moments from 10^7 sampled data is
demonstrated.Comment: 12 pages, 8 figures, REVTeX, submitted Phys. Rev.
- …
