3,122 research outputs found
Thermal desorption study of physical forces at the PTFE surface
Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage
Use of high L.E.T. radiation to improve adhesion of metals to polytetrafluoroethylene
MgK alpha X-rays (1254 eV) and 2 keV electrons irradiate the surface of polytetrafluoro ethylene (PTFE). The damage is confined to a few tenths of a micron below the surface, and the doses exceed 10 to the eight power rad. X-ray Photoelectron Spectroscopy (XPS) of the irradiated surfaces and mass spectroscopy of the gaseous products of irradiation indicate that the damaged layer is crosslinked or branched PTFE. After either type of irradiation, the surface has enhanced affinity for metals and a lower contact angle with hexadecane. Tape pull tests show that evaporated Ni and Au films adhere better to the irradiated surface. XPS shows the Ni interacts chemically with PTFE forming NiF2 and possibly NiC. However, the gold adhesion and contact angle results indicate that the interaction is, at least in part, chemically nonspecific. Decreased contact angles on FEP Teflon crystallized against gold were attributed to either the presence of a polar oxygen layer or increased physical forces due to greater density. In the case of irradiated PTFE, no oxygen on the surface was observed. The crosslinked structure might, however, have a greater density, thus accounting for the observed increase in adhesion and wettability
Opto-mechanical micro-macro entanglement
We propose to create and detect opto-mechanical entanglement by storing one
component of an entangled state of light in a mechanical resonator and then
retrieving it. Using micro-macro entanglement of light as recently demonstrated
experimentally, one can then create opto-mechanical entangled states where the
components of the superposition are macroscopically different. We apply this
general approach to two-mode squeezed states where one mode has undergone a
large displacement. Based on an analysis of the relevant experimental
imperfections, the scheme appears feasible with current technology.Comment: 7 pages, 6 figures, to appear in PRL, submission coordinated with
Sekatski et al. who reported on similar result
Characterizing the Rigidly Rotating Magnetosphere Stars HD 345439 and HD 23478
The SDSS III APOGEE survey recently identified two new Ori E type
candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating
massive stars whose large (kGauss) magnetic fields confine circumstellar
material around these systems. Our analysis of multi-epoch photometric
observations of HD 345439 from the KELT, SuperWASP, and ASAS surveys reveals
the presence of a 0.7701 day period in each dataset, suggesting the
system is amongst the faster known Ori E analogs. We also see clear
evidence that the strength of H-alpha, H I Brackett series lines, and He I
lines also vary on a 0.7701 day period from our analysis of multi-epoch,
multi-wavelength spectroscopic monitoring of the system from the APO 3.5m
telescope. We trace the evolution of select emission line profiles in the
system, and observe coherent line profile variability in both optical and
infrared H I lines, as expected for rigidly rotating magnetosphere stars. We
also analyze the evolution of the H I Br-11 line strength and line profile in
multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The
observed periodic behavior is consistent with that recently reported by Sikora
and collaborators in optical spectra.Comment: Accepted in ApJ
Parallel quantized charge pumping
Two quantized charge pumps are operated in parallel. The total current
generated is shown to be far more accurate than the current produced with just
one pump operating at a higher frequency. With the application of a
perpendicular magnetic field the accuracy of quantization is shown to be 20
ppm for a current of pA. The scheme for parallel pumping presented in
this work has applications in quantum information processing, the generation of
single photons in pairs and bunches, neural networking and the development of a
quantum standard for electrical current. All these applications will benefit
greatly from the increase in output current without the characteristic decrease
in accuracy as a result of high-frequency operation
Metal-insulator transition at B=0 in a dilute two dimensional GaAs-AlGaAs hole gas
We report the observation of a metal insulator transition at B=0 in a high
mobility two dimensional hole gas in a GaAs-AlGaAs heterostructure. A clear
critical point separates the insulating phase from the metallic phase,
demonstrating the existence of a well defined minimum metallic conductivity
sigma(min)=2e/h. The sigma(T) data either side of the transition can be
`scaled' on to one curve with a single parameter (To). The application of a
parallel magnetic field increases sigma(min) and broadens the transition. We
argue that strong electron-electron interactions (rs = 10) destroy phase
coherence, removing quantum intereference corrections to the conductivity.Comment: 4 pages RevTex + 4 figures. Submitted to PRL. Originally posted 22
September 1997. Revised 12 October 1997 - minor changes to referencing,
figure cations and figure
Macroscopic superpositions via nested interferometry: finite temperature and decoherence considerations
Recently there has been much interest in optomechanical devices for the
production of macroscopic quantum states. Here we focus on a proposed scheme
for achieving macroscopic superpositions via nested interferometry. We consider
the effects of finite temperature on the superposition produced. We also
investigate in detail the scheme's feasibility for probing various novel
decoherence mechanisms.Comment: 12 pages, 2 figure
Large transconductance oscillations in a single-well vertical Aharonov-Bohm interferometer
Aharonov-Bohm (AB) interference is reported for the first time in the
conductance of a vertical nanostructure based on a single GaAs/AlGaAs quantum
well (QW). The two lowest subbands of the well are spatially separated by the
Hartree barrier originating from electronic repulsion in the modulation-doped
QW and provide AB two-path geometry. Split-gates control the in-plane
electronic momentum dispersion. In our system, we have clearly demonstrated AB
interference in both electrostatic and magnetic modes. In the latter case the
magnetic field was applied parallel to the QW plane, and perpendicular to the
0.02 um^2 AB loop. In the electrostatic mode of operation the single-QW scheme
adopted led to large transconductance oscillations with relative amplitudes
exceeding 30 %. The relevance of the present design strategy for the
implementation of coherent nanoelectronic devices is underlined.Comment: Accepted for publication on Physical Review B Rapid Communication
Interference effects in a tunable quantum point contact integrated with an electronic cavity
We show experimentally how quantum interference can be produced using an integrated quantum system comprising an arch-shaped short quantum wire (or quantum point contact, QPC) of 1D electrons and a reflector forming an electronic cavity. On tuning the coupling between the QPC and the electronic cavity, fine oscillations are observed when the arch QPC is operated in the quasi-1D regime. These oscillations correspond to interference between the 1D states and a state which is similar to the Fabry-Perot state and suppressed by a small transverse magnetic field of ±60 mT. Tuning the reflector, we find a peak in resistance which follows the behavior expected for a Fano resonance. We suggest that this is an interesting example of a Fano resonance in an open system which corresponds to interference at or near the Ohmic contacts due to a directly propagating, reflected discrete path and the continuum states of the cavity corresponding to multiple scattering. Remarkably, the Fano factor shows an oscillatory behavior taking peaks for each fine oscillation, thus, confirming coupling between the discrete and continuum states. The results indicate that such a simple quantum device can be used as building blocks to create more complex integrated quantum circuits for possible applications ranging from quantum-information processing to realizing the fundamentals of complex quantum systems
- …
