22,404 research outputs found
The essential signature of a massive starburst in a distant galaxy
Observations of carbon monoxide (CO) emission in high redshift (z>2) galaxies
indicate the presence of large amounts of molecular gas. Many of these galaxies
contain an active galactic nucleus (AGN) powered by accretion of gas onto a
supermassive black hole, and a key question is whether their extremely high
infrared luminosities result from the AGN, or from bursts of massive star
formation (associated with the molecular gas), or both. In the Milky Way,
high-mass stars form in the dense cores of interstellar molecular clouds; gas
densities are n(H2)>105 cm-3 in the cores. Recent surveys show that virtually
all galactic sites of high-mass star formation have similarly high densities.
The bulk of the cloud material traced by CO observations is at a much lower
density. In galaxies in the local Universe, the HCN(J=1-0) line is an effective
tracer of the high-density molecular gas. Here we report observations of HCN
emission in the early Universe from the infrared luminous 'Cloverleaf' quasar
(at a redshift z=2.5579). The HCN line luminosity indicates the presence of 10
billion solar masses of very dense gas, an essential feature of an immense
starburst that contributes, together with the AGN it harbors, to its high
infrared luminosity.Comment: PDF pape
Homogeneous and heterogeneous chemistry along air parcel trajectories
The study of coupled heterogeneous and homogeneous chemistry due to polar stratospheric clouds (PSC's) using Lagrangian parcel trajectories for interpretation of the Airborne Arctic Stratosphere Experiment (AASE) is discussed. This approach represents an attempt to quantitatively model the physical and chemical perturbation to stratospheric composition due to formation of PSC's using the fullest possible representation of the relevant processes. Further, the meteorological fields from the United Kingdom Meteorological office global model were used to deduce potential vorticity and inferred regions of PSC's as an input to flight planning during AASE
Structure-preserving desynchronization of minority games
Perfect synchronicity in N-player games is a useful theoretical dream, but communication delays are inevitable and may result in asynchronous interactions. Some systems such as financial markets are asynchronous by design, and yet most theoretical models assume perfectly synchronized actions. We propose a general method to transform standard models of adaptive agents into asynchronous systems while preserving their global structure under some conditions. Using the minority game as an example, we find that the phase and fluctuations structure of the standard game subsists even in maximally asynchronous deterministic case, but that it disappears if too much stochasticity is added to the temporal structure of interaction. Allowing for heterogeneous communication speeds and activity patterns gives rise to a new information ecology that we study in detail
Dense Molecular Gas and the Role of Star Formation in the Host Galaxies of Quasi-Stellar Objects
New millimeter-wave CO and HCN observations of the host galaxies of
infrared-excess Palomar Green quasi-stellar objects (PG QSOs) previously
detected in CO are presented. These observations are designed to assess the
validity of using the infrared luminosity to estimate star formation rates of
luminous AGN by determining the relative significance of dust-heating by young,
massive stars and active galactic nuclei (AGN) in QSO hosts and IRAS galaxies
with warm, AGN-like infrared colors. The HCN data show the PG QSO host IZw1 and
most of the warm IRAS galaxies to have high L_IR / L'_HCN (>1600) relative to
the cool IRAS galaxy population for which the median L_IR / L'_HCN ~
890(+440,-470). If the assumption is made that the infrared emission from cool
IRAS galaxies is reprocessed light from embedded star-forming regions, then
high values of L_IR / L'_HCN are likely the result of dust heating by the AGN.
Further, if the median ratio of L'_HCN / L'_CO ~ 0.06 observed for Seyfert
galaxies and IZw1 is applied to the PG QSOs not detected in HCN, then the
derived L_IR / L'_HCN correspond to a stellar contribution to the production of
L_IR of ~ 7-39%, and star formation rates ~ 2-37 M_sun/yr are derived for the
QSO hosts. Alternatively, if the far-infrared is adopted as the star formation
component of the total infrared in cool galaxies, the stellar contributions in
QSO hosts to their L_FIR are up to 35% higher than the percentages derived for
L_IR. This raises the possibility that the L_FIR in several of the PG QSO
hosts, including IZw1, could be due entirely to dust heated by young, massive
stars. Finally, there is no evidence that the global HCN emission is enhanced
relative to CO in galaxies hosting luminous AGN.Comment: LaTex, 31 pages, including 9 postscript figures, AJ, in press
(December 2006
- …
