3,256 research outputs found
Structure of a model TiO2 photocatalytic interface
The interaction of water with TiO2 is crucial to many of its practical
applications, including photocatalytic water splitting. Following the first
demonstration of this phenomenon 40 years ago there have been numerous studies
of the rutile single-crystal TiO2(110) interface with water. This has provided
an atomic-level understanding of the water-TiO2 interaction. However, nearly
all of the previous studies of water/TiO2 interfaces involve water in the
vapour phase. Here, we explore the interfacial structure between liquid water
and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning
tunnelling microscopy and surface X-ray diffraction are used to determine the
structure, which is comprised of an ordered array of hydroxyl molecules with
molecular water in the second layer. Static and dynamic density functional
theory calculations suggest that a possible mechanism for formation of the
hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially
defected surface. The quantitative structural properties derived here provide a
basis with which to explore the atomistic properties and hence mechanisms
involved in TiO2 photocatalysis
Instantonic approach to triple well potential
By using a usual instanton method we obtain the energy splitting due to
quantum tunneling through the triple well barrier. It is shown that the term
related to the midpoint of the energy splitting in propagator is quite
different from that of double well case, in that it is proportional to the
algebraic average of the frequencies of the left and central wells.Comment: Revtex, 11 pages, Included one eps figur
correlations from the stopped reaction on He
We have investigated correlations of coincident pairs from the
stopped reaction on He, and clearly observed and
branches of the two-nucleon absorption process in the
invariant mass spectra. In addition, non-mesonic reaction channels, which
indicate possible exotic signals for the formation of strange multibaryon
states, have been identified.Comment: 5 pages, 3 figures, submitted to Physical Review Letter
The band structure of BeTe - a combined experimental and theoretical study
Using angle-resolved synchrotron-radiation photoemission spectroscopy we have
determined the dispersion of the valence bands of BeTe(100) along ,
i.e. the [100] direction. The measurements are analyzed with the aid of a
first-principles calculation of the BeTe bulk band structure as well as of the
photoemission peaks as given by the momentum conserving bulk transitions.
Taking the calculated unoccupied bands as final states of the photoemission
process, we obtain an excellent agreement between experimental and calculated
spectra and a clear interpretation of almost all measured bands. In contrast,
the free electron approximation for the final states fails to describe the BeTe
bulk band structure along properly.Comment: 21 pages plus 4 figure
CD69 is a TGF-β/1α,25-dihydroxyvitamin D3 target gene in monocytes
CD69 is a transmembrane lectin that can be expressed on most hematopoietic cells. In monocytes, it has been functionally linked to the 5-lipoxygenase pathway in which the leukotrienes, a class of highly potent inflammatory mediators, are produced. However, regarding CD69 gene expression and its regulatory mechanisms in monocytes, only scarce data are available. Here, we report that CD69 mRNA expression, analogous to that of 5-lipoxygenase, is induced by the physiologic stimuli transforming growth factor-β (TGF-β) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in monocytic cells. Comparison with T- and B-cell lines showed that the effect was specific for monocytes. CD69 expression levels were increased in a concentration-dependent manner, and kinetic analysis revealed a rapid onset of mRNA expression, indicating that CD69 is a primary TGF-β/1α,25(OH)2D3 target gene. PCR analysis of different regions of the CD69 mRNA revealed that de novo transcription was initiated and proximal and distal parts were induced concomitantly. In common with 5-lipoxygenase, no activation of 0.7 kb or ~2.3 kb promoter fragments by TGF-β and 1α,25(OH)2D3 could be observed in transient reporter assays for CD69. Analysis of mRNA stability using a transcription inhibitor and a 3′UTR reporter construct showed that TGF-β and 1α,25(OH)2D3 do not influence CD69 mRNA stability. Functional knockdown of Smad3 clearly demonstrated that upregulation of CD69 mRNA, in contrast to 5-LO, depends on Smad3. Comparative studies with different inhibitors for mitogen activated protein kinases (MAPKs) revealed that MAPK signalling is involved in CD69 gene regulation, whereas 5-lipoxygenase gene expression was only partly affected. Mechanistically, we found evidence that CD69 gene upregulation depends on TAK1-mediated p38 activation. In summary, our data indicate that CD69 gene expression, conforming with 5-lipoxygenase, is regulated monocyte-specifically by the physiologic stimuli TGF-β and 1α,25(OH)2D3 on mRNA level, although different mechanisms account for the upregulation of each gene
Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering
We report the first measurement of the parity-violating asymmetry A_PV in the
elastic scattering of polarized electrons from 208Pb. A_PV is sensitive to the
radius of the neutron distribution (Rn). The result A_PV = 0.656 \pm 0.060
(stat) \pm 0.014 (syst) ppm corresponds to a difference between the radii of
the neutron and proton distributions Rn - Rp = 0.33 +0.16 -0.18 fm and provides
the first electroweak observation of the neutron skin which is expected in a
heavy, neutron-rich nucleus.Comment: 6 pages, 1 figur
A Stochastic Approach to Shortcut Bridging in Programmable Matter
In a self-organizing particle system, an abstraction of programmable matter,
simple computational elements called particles with limited memory and
communication self-organize to solve system-wide problems of movement,
coordination, and configuration. In this paper, we consider a stochastic,
distributed, local, asynchronous algorithm for "shortcut bridging", in which
particles self-assemble bridges over gaps that simultaneously balance
minimizing the length and cost of the bridge. Army ants of the genus Eciton
have been observed exhibiting a similar behavior in their foraging trails,
dynamically adjusting their bridges to satisfy an efficiency trade-off using
local interactions. Using techniques from Markov chain analysis, we rigorously
analyze our algorithm, show it achieves a near-optimal balance between the
competing factors of path length and bridge cost, and prove that it exhibits a
dependence on the angle of the gap being "shortcut" similar to that of the ant
bridges. We also present simulation results that qualitatively compare our
algorithm with the army ant bridging behavior. Our work gives a plausible
explanation of how convergence to globally optimal configurations can be
achieved via local interactions by simple organisms (e.g., ants) with some
limited computational power and access to random bits. The proposed algorithm
also demonstrates the robustness of the stochastic approach to algorithms for
programmable matter, as it is a surprisingly simple extension of our previous
stochastic algorithm for compression.Comment: Published in Proc. of DNA23: DNA Computing and Molecular Programming
- 23rd International Conference, 2017. An updated journal version will appear
in the DNA23 Special Issue of Natural Computin
Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients.
Treatment of multidrug resistant tuberculosis (MDR-TB) is lengthy, toxic, expensive, and has generally poor outcomes. We undertook an individual patient data meta-analysis to assess the impact on outcomes of the type, number, and duration of drugs used to treat MDR-TB
- …
