424 research outputs found
IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor Networks
The design of ubiquitous computing environments is challenging, mainly due to the unforeseeable impact of real-world environments on the system performance. A crucial step to validate the behavior of these systems is to perform in-field experiments under various conditions. We introduce IRIS, an experiment management and data processing tool allowing the definition of arbitrary complex data analysis applications. While focusing on Wireless Sensor Networks, IRIS supports the seamless integration of heterogeneous data gathering technologies. The resulting flexibility and extensibility enable the definition of various services, from experiment management and performance evaluation to user-specific applications and visualization. IRIS demonstrated its effectiveness in three real-life use cases, offering a valuable support for in-field experimentation and development of customized applications for interfacing the end user with the system
Synthesis, antiproliferative activity, and mechanism of action of a series of 2-{[2E]-3-phenylprop-2-enoylamino}benzamides
Several new 2-{[2E]-3-phenylprop-2-enoylamino}benzamides 12a-s and 17t-v were synthesized by stirring in pyridine the (E)-3-(2-R1-3-R2-4-R3-phenyl)acrylic acid chlorides 11c-k and 11t-v with the appropriate anthranilamide derivatives 10a-c or the 5-iodo anthranilic acid 13. Some of synthesized compounds were evaluated for their in vitro antiproliferative activity against the full NCI tumor cell line panel derived from nine clinically isolated cancer types (leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate and breast). COMPARE analysis, effects on tubulin polymerization in cells and with purified tubulin, and effects on cell cycle distribution for 17t, the most active of the series, indicate that these new antiproliferative compounds act as antitubulin agent
By promoting cell differentiation, miR-100 sensitizes basal-like breast cancer stem cells to hormonal therapy
Basal-like breast cancer is an aggressive tumor subtype with a poor response to conventional therapies. Tumor formation and relapse are sustained by a cell subset of Breast Cancer Stem Cells (BrCSCs). Here we show that miR-100 inhibits maintenance and expansion of BrCSCs in basal-like cancer through Polo-like kinase1 (Plk1) down-regulation. Moreover, miR-100 favors BrCSC differentiation, converting a basal like phenotype into luminal. It induces the expression of a functional estrogen receptor (ER) and renders basal-like BrCSCs responsive to hormonal therapy. The key role played by miR-100 in breast cancer free-survival is confirmed by the analysis of a cohort of patients' tumors, which shows that low expression of miR-100 is a negative prognostic factor and is associated with gene signatures of high grade undifferentiated tumors. Our findings indicate a new possible therapeutic strategy, which could make aggressive breast cancers responsive to standard treatments
One-carbon metabolism in cancer
Cells require one-carbon units for nucleotide synthesis, methylation and reductive metabolism, and these pathways support the high proliferative rate of cancer cells. As such, anti-folates, drugs that target one-carbon metabolism, have long been used in the treatment of cancer. Amino acids, such as serine are a major one-carbon source, and cancer cells are particularly susceptible to deprivation of one-carbon units by serine restriction or inhibition of de novo serine synthesis. Recent work has also begun to decipher the specific pathways and sub-cellular compartments that are important for one-carbon metabolism in cancer cells. In this review we summarise the historical understanding of one-carbon metabolism in cancer, describe the recent findings regarding the generation and usage of one-carbon units and explore possible future therapeutics that could exploit the dependency of cancer cells on one-carbon metabolism
Inter-familial and intra-familial phenotypic variability in three Sicilian families with Anderson-Fabry disease.
Abstract
BACKGROUND:
Anderson-Fabry disease (AFD) is an inborn lysosomal enzymopathy resulting from the deficient or absent activity of the lysosomal exogalactohydrolase, α-galactosidase A. This deficiency, results in the altered metabolism of glycosphingolipids which leads to their accumulation in lysosomes, thus to cellular and vascular dysfunction. To date, numerous mutations (according to recent data more than 1000 mutations) have been reported in the GLA intronic and exonic mutations. Traditionally, clinical manifestations are more severe in affected hemizygous males than in females. Nevertheless, recent studies have described severe organ dysfunction in women.
THE AIM OF THE STUDY:
This study reports clinical, biochemical, and molecular findings of the members of three Sicilian families. The clinical history of these patients highlights a remarkable interfamilial and intrafamilial phenotypic variability which characterizes Fabry disease relative to target organs and severity of clinical manifestations.
DISCUSSION:
Our findings, in agreement with previous data, report a little genotype-phenotype correlation for the disease, suggesting that the wide phenotypic variability of Anderson-Fabry disease is not completely ascribable to different gene mutations but other factors and mechanisms seem to be involved in the pathogenesis and clinical expression of the disease. Moreover, this study emphasies the importance of pedigree analysis in the family of each proband for identifying other possibly affected relatives
β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides
Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109–122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109–122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109–122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106–126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies
Strengthening coherence between social protection and productive interventions – The case of Lesotho
Social protection has been recognized as a key strategy to address poverty, vulnerability and social exclusion in Lesotho. As a result, the Government, with support from UNICEF and the European Union, developed the Child Grants Programme (CGP), which provides unconditional cash transfers to poor and vulnerable households registered in the National Information System for Social Assistance (NISSA). The quantitative impact evaluation presented in this report seeks to document the welfare and economic impacts of CGP and SPRINGS on direct beneficiaries and assess whether combining the cash transfers with a package of rural development interventions can create positive synergies at both individual and household level, especially in relation to income generating activities and nutrition. This paper is being published in the context of a partnership between FAO, IFAD and the Universidad de los Andes (UNIANDES) and its Centro de Estudios en Desarrollo Económico (CEDE) based in Bogotá, Colombia
Reactive hyperemia index (RHI) and cognitive performance indexes are associated with histologic markers of liver disease in subjects with non-alcoholic fatty liver disease (NAFLD): a case control study.
BACKGROUND:
No study evaluated vascular health markers in subjects with non-alcoholic fatty liver disease (NAFLD) through a combined analysis of reactive hyperemia peripheral arterial tonometry (RH-PAT) and arterial stiffness indexes.
AIM OF THE STUDY:
We aimed to assess whether NAFLD and its histological severity are associated with impairment of arterial stiffness and RH-PAT indexes in a mixed cohort of patients with biopsy-proven NAFLD.
MATERIALS AND METHODS:
The Kleiner classification was used to grade NAFLD grade. Pulse wave velocity (PWV) and augmentation index (Aix) were used as markers of arterial stiffness, whereas endothelial function was assessed using reactive hyperemia index (RHI). The mini-mental state examination (MMSE) was administered to test cognitive performance.
RESULTS:
80 consecutive patients with biopsy-proven NAFLD and 83 controls without fatty liver disease. NAFLD subjects showed significantly lower mean RHI, higher mean arterial stiffness indexes and lower mean MMSE score. Multivariable analysis after correction for BMI, dyslipidaemia, hypertension, sex, diabetes, age and cardiovascular disease showed that BMI, diastolic blood pressure and RHI are significantly associated to NAFLD. Simple linear regression analysis showed among non-alcoholic steatohepatitis (NASH) subjects a significant negative relationship between ballooning grade and MMSE and a significant positive association between Kleiner steatosis grade and augmentation index.
CONCLUSIONS:
Future research will be addressed to evaluate the relationship between inflammatory markers and arterial stiffness and endothelial function indexes in NAFLD subjects. These study will evaluate association between cardiovascular event incidence and arterial stiffness, endothelial and cognitive markers, and they will address the beneficial effects of cardiovascular drugs such as statins and ACE inhibitors on these surrogate markers in NAFLD subjects
Estimating the costs of specialised care : updated analysis using data for 2009/10. Report to the Department of Health
Payment by Results is predicated on the assumption that patients allocated to the same Healthcare Resource Group (HRG) are equally costly to treat. This may be untrue for some patients, such as those who receive specialised care or who are transferred between hospitals. We assess whether and by how much such patients have higher costs than those allocated to the same HRG. Hospitals that treat such patients might be paid a top-up to the HRG tariff to reflect these higher costs
- …
