827 research outputs found
Interferometric sensing of the tilt angle of a Gaussian beam
We investigate interferometric techniques to estimate the deflection angle of
an optical beam and compare them to the direct detection of the beam
deflection. We show that quantum metrology methods lead to a unifying treatment
for both single photons and classical fields. Using the Fisher information to
assess the precision limits of the interferometric schemes, we show that the
precision can be increased by exploiting the initial transverse displacement of
the beam. This gain, which is present for both Sagnac and Mach-Zehnder-like
configurations, can be considerable when compared to non-interferometric
methods. In addition to the fundamental increase in precision, the
interferometric schemes have the technical advantage that (i) the precision
limits can be saturated by a sole polarization measurement on the field, and
that (ii) the detection system can be placed at any longitudinal position along
the beam. We also consider position-dependent polarization measurements, and
show that in this case the precision increases with the propagation distance,
as well as the initial transverse displacement.Comment: Comments are welcom
Experimental Observation of Environment-induced Sudden Death of Entanglement
We demonstrate the difference between local, single-particle dynamics and
global dynamics of entangled quantum systems coupled to independent
environments. Using an all-optical experimental setup, we show that, while the
environment-induced decay of each system is asymptotic, quantum entanglement
may suddenly disappear. This "sudden death" constitutes yet another distinct
and counter-intuitive trait of entanglement.Comment: 4 pages, 4 figure
Quantum Non-Demolition Test of Bipartite Complementarity
We present a quantum circuit that implements a non-demolition measurement of
complementary single- and bi-partite properties of a two-qubit system:
entanglement and single-partite visibility and predictability. The system must
be in a pure state with real coefficients in the computational basis, which
allows a direct operational interpretation of those properties. The circuit can
be realized in many systems of interest to quantum information.Comment: 4 pages, 2 figure
Direct measurement of finite-time disentanglement induced by a reservoir
We propose a method for directly probing the dynamics of disentanglement of
an initial two-qubit entangled state, under the action of a reservoir. We show
that it is possible to detect disentanglement, for experimentally realizable
examples of decaying systems, through the measurement of a single observable,
which is invariant throughout the decay. The systems under consideration may
lead to either finite-time or asymptotic disentanglement. A general
prescription for measuring this observable, which yields an operational meaning
to entanglement measures, is proposed, and exemplified for cavity quantum
electrodynamics and trapped ions.Comment: 4 pages, 2 figure
Fundamental solution method applied to time evolution of two energy level systems: exact and adiabatic limit results
A method of fundamental solutions has been used to investigate transitions in
two energy level systems with no level crossing in a real time. Compact
formulas for transition probabilities have been found in their exact form as
well as in their adiabatic limit. No interference effects resulting from many
level complex crossings as announced by Joye, Mileti and Pfister (Phys. Rev.
{\bf A44} 4280 (1991)) have been detected in either case. It is argued that
these results of this work are incorrect. However, some effects of Berry's
phases are confirmed.Comment: LaTeX2e, 23 pages, 8 EPS figures. Style correcte
Methods for Reliable Teleportation
Recent experimental results and proposals towards implementation of quantum
teleportation are discussed. It is proved that reliable (theoretically, 100%
probability of success) teleportation cannot be achieved using the methods
applied in recent experiments, i.e., without quantum systems interacting one
with the other. Teleportation proposal involving atoms and electro-magnetic
cavities are reviewed and the most feasible methods are described. In
particular, the language of nonlocal measurements has been applied which has
also been used for presenting a method for teleportation of quantum states of
systems with continuous variables.Comment: 11 pages, 5eps figure
Kondo resonance effect on persistent currents through a quantum dot in a mesoscopic ring
The persistent current through a quantum dot inserted in a mesoscopic ring of
length L is studied. A cluster representing the dot and its vicinity is exactly
diagonalized and embedded into the rest of the ring. The Kondo resonance
provides a new channel for the current to flow. It is shown that due to scaling
properties, the persistent current at the Kondo regime is enhanced relative to
the current flowing either when the dot is at resonance or along a perfect ring
of same length. In the Kondo regime the current scales as , unlike
the scaling of a perfect ring. We discuss the possibility of detection
of the Kondo effect by means of a persistent current measurement.Comment: 11 pages, 3 Postscript figure
Modelling the Recoherence of Mesoscopic Superpositions in Dissipative Environments
A model is presented to describe the recently proposed experiment (J.
Raimond,
M. Brune and S. Haroche Phys. Rev. Lett {\bf 79}, 1964 (1997)) where a
mesoscopic superposition of radiation states is prepared in a high-Q cavity
which is coupled to a similar resonator. The dynamical coherence loss of such
state in the absence of dissipation is reversible and can in principle be
observed. We show how this picture is modified due to the presence of the
environmental couplings. Analytical expressions for the experimental
conditional probabilities and the linear entropy are given. We conclude that
the phenomenon can still be observed provided the ratio between the damping
constant and the inter-cavities coupling does not exceed about a few percent.
This observation is favored for superpositions of states with large overlap.Comment: 13 pages, 6 figure
- …
