1,049 research outputs found
Preduals of semigroup algebras
For a locally compact group G, the measure convolution algebra M(G) carries a natural coproduct. In previous work, we showed that the canonical predual C 0(G) of M(G) is the unique predual which makes both the product and the coproduct on M(G) weak*-continuous. Given a discrete semigroup S, the convolution algebra ℓ 1(S) also carries a coproduct. In this paper we examine preduals for ℓ 1(S) making both the product and the coproduct weak*-continuous. Under certain conditions on S, we show that ℓ 1(S) has a unique such predual. Such S include the free semigroup on finitely many generators. In general, however, this need not be the case even for quite simple semigroups and we construct uncountably many such preduals on ℓ 1(S) when S is either ℤ+×ℤ or (ℕ,⋅)
Shift invariant preduals of ℓ<sub>1</sub>(ℤ)
The Banach space ℓ<sub>1</sub>(ℤ) admits many non-isomorphic preduals, for
example, C(K) for any compact countable space K, along with many more
exotic Banach spaces. In this paper, we impose an extra condition: the predual
must make the bilateral shift on ℓ<sub>1</sub>(ℤ) weak<sup>*</sup>-continuous. This is
equivalent to making the natural convolution multiplication on ℓ<sub>1</sub>(ℤ)
separately weak*-continuous and so turning ℓ<sub>1</sub>(ℤ) into a dual Banach
algebra. We call such preduals <i>shift-invariant</i>. It is known that the
only shift-invariant predual arising from the standard duality between C<sub>0</sub>(K)
(for countable locally compact K) and ℓ<sub>1</sub>(ℤ) is c<sub>0</sub>(ℤ). We provide
an explicit construction of an uncountable family of distinct preduals which do
make the bilateral shift weak<sup>*</sup>-continuous. Using Szlenk index arguments, we
show that merely as Banach spaces, these are all isomorphic to c<sub>0</sub>. We then
build some theory to study such preduals, showing that they arise from certain
semigroup compactifications of ℤ. This allows us to produce a large number
of other examples, including non-isometric preduals, and preduals which are not
Banach space isomorphic to c<sub>0</sub>
Conditions implying the uniqueness of the weak*-topology on certain group algebras
We investigate possible preduals of the measure algebra M(G) of a locally compact group and the Fourier algebra A(G) of a separable compact group. Both of these algebras are canonically dual spaces and the canonical preduals make the multiplication separately weak*-continuous so that these algebras are dual Banach algebras. In this paper we find additional conditions under which the preduals
C0(G) of M(G) and C*(G) of A(G) are uniquely determined. In both cases we consider a natural comultiplication and show that the canonical predual gives rise to the unique weak*-topology making both the multiplication separately weak*-continuous and the comultiplication weak*-continuous. In particular, dual cohomological properties of these algebras are well defined with this additional structure
Modelling Timeouts without Timelocks
We address the issue of modelling a simple timeout in timed automata. We argue that expression of the timeout in the UPPAAL timed automata model is unsatisfactory since when composed with a component behaviour, the timeout can generate timelocks. In response we consider an alternative timed automata framework - timed automata with deadlines. This framework has the property that timelocks cannot be created when composing automata in parallel. We explore a number of different options for reformulating the timeout in this framework and then we relate them
{VeSTA} : a Tool to Verify the Correct Integration of a Component in a Composite Timed System
International audienceVesta is a push-button tool for checking the correct integration of a component in an environment, for component-based timed systems. By correct integration, we mean that the local properties of the component are preserved when this component is merged into an environment. This correctness is checked by means of a so-called divergencesensitive and stability-respecting timed tau-simulation, ensuring the preservation of all linear timed properties expressed in the logical formalism Mitl (Metric Interval Temporal Logic), as well as strong non-zenoness and deadlock-freedom. The development of the tool was guided by the architecture of the Open-Kronos tool. This allows, as additional feature, an easy connection of the models considered in Vesta to the Open- Caesar verification platform, and to the Open-Kronos tool
Spontaneous alloying in binary metal microclusters - A molecular dynamics study -
Microcanonical molecular dynamics study of the spontaneous alloying(SA),
which is a manifestation of fast atomic diffusion in a nano-sized metal
cluster, is done in terms of a simple two dimensional binary Morse model.
Important features observed by Yasuda and Mori are well reproduced in our
simulation. The temperature dependence and size dependence of the SA phenomena
are extensively explored by examining long time dynamics. The dominant role of
negative heat of solution in completing the SA is also discussed. We point out
that a presence of melting surface induces the diffusion of core atoms even if
they are solid-like. In other words, the {\it surface melting} at substantially
low temperature plays a key role in attaining the SA.Comment: 15 pages, 12 fgures, Submitted to Phys.Rev.
LTL Parameter Synthesis of Parametric Timed Automata
The parameter synthesis problem for parametric timed automata is undecidable
in general even for very simple reachability properties. In this paper we
introduce restrictions on parameter valuations under which the parameter
synthesis problem is decidable for LTL properties. The investigated bounded
integer parameter synthesis problem could be solved using an explicit
enumeration of all possible parameter valuations. We propose an alternative
symbolic zone-based method for this problem which results in a faster
computation. Our technique extends the ideas of the automata-based approach to
LTL model checking of timed automata. To justify the usefulness of our
approach, we provide experimental evaluation and compare our method with
explicit enumeration technique.Comment: 23 pages, extended versio
Efficient Emptiness Check for Timed B\"uchi Automata (Extended version)
The B\"uchi non-emptiness problem for timed automata refers to deciding if a
given automaton has an infinite non-Zeno run satisfying the B\"uchi accepting
condition. The standard solution to this problem involves adding an auxiliary
clock to take care of the non-Zenoness. In this paper, it is shown that this
simple transformation may sometimes result in an exponential blowup. A
construction avoiding this blowup is proposed. It is also shown that in many
cases, non-Zenoness can be ascertained without extra construction. An
on-the-fly algorithm for the non-emptiness problem, using non-Zenoness
construction only when required, is proposed. Experiments carried out with a
prototype implementation of the algorithm are reported.Comment: Published in the Special Issue on Computer Aided Verification - CAV
2010; Formal Methods in System Design, 201
Parameter-Independent Strategies for pMDPs via POMDPs
Markov Decision Processes (MDPs) are a popular class of models suitable for
solving control decision problems in probabilistic reactive systems. We
consider parametric MDPs (pMDPs) that include parameters in some of the
transition probabilities to account for stochastic uncertainties of the
environment such as noise or input disturbances.
We study pMDPs with reachability objectives where the parameter values are
unknown and impossible to measure directly during execution, but there is a
probability distribution known over the parameter values. We study for the
first time computing parameter-independent strategies that are expectation
optimal, i.e., optimize the expected reachability probability under the
probability distribution over the parameters. We present an encoding of our
problem to partially observable MDPs (POMDPs), i.e., a reduction of our problem
to computing optimal strategies in POMDPs.
We evaluate our method experimentally on several benchmarks: a motivating
(repeated) learner model; a series of benchmarks of varying configurations of a
robot moving on a grid; and a consensus protocol.Comment: Extended version of a QEST 2018 pape
The determinants of election to the United Nations Security Council
This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11127-013-0096-4.The United Nations Security Council (UNSC) is the foremost international body responsible for the maintenance of international peace and security. Members vote on issues of global importance and consequently receive perks—election to the UNSC predicts, for instance, World Bank and IMF loans. But who gets elected to the UNSC? Addressing this question empirically is not straightforward as it requires a model that allows for discrete choices at the regional and international levels; the former nominates candidates while the latter ratifies them. Using an original multiple discrete choice model to analyze a dataset of 180 elections from 1970 to 2005, we find that UNSC election appears to derive from a compromise between the demands of populous countries to win election more frequently and a norm of giving each country its turn. We also find evidence that richer countries from the developing world win election more often, while involvement in warfare lowers election probability. By contrast, development aid does not predict election
- …
