339 research outputs found

    Structure and Magnetic Properties of the Radical Cation Salt of a TTF-based NiII Complex

    Get PDF
    Chemical oxidation of a TTF-based NiII complex with I2 produces the corresponding radical cation salt 1, [Ni2Cl2(L)2](I3)2(I5)2(I2)(H2O)2(C4H8O)3, (L=4,5-bis(2-pyridylmethylsulfanyl)-4',5'-ethylenedithiotetrathiafulvalene). The results of magnetic susceptibility measurements show the occurrence of intramolecular magnetic exchange interactions in 1. The lack of close S···S contacts, confirmed by crystal structure analysis, results in an insulating behavio

    Dithiinmaleimide Functionalized ET Derivatives: Syntheses, Characterization and X-ray Structure

    Get PDF
    Dithiinmaleimide (ethylenedithio)tetrathiafulvalene (1) and N-phenyldithiinmaleimide (ethylenedithio)tetrathiafulvalene (2) have been synthesized from bis(tetraethylammonium)bis(ethylenedithiotetrathiafulvalenyldithiolato)-zincate (3) in high yields. Their electrochemical properties were investigated by cyclic voltammetry (CV) measurements which show two reversible redox potentials of the tetrathiafulvalene (TTF) moiety and an irreversible reduction potential of the maleimide ring. The X-ray structure of 1 shows close S···S contacts in the range of the van der Waals radii (3.6 Å) and hydrogen bonds between the maleimide unite

    Incarcerated vermiform appendix in a left-sided inguinal hernia

    Get PDF
    We report here of a patient with an incarcerated vermiform appendix occurring in a left-sided indirect inguinal hernia. Occasionally, appendices are found in a hernial sac; however, the finding of an incarcerated vermiform appendix in an inguinal hernia on the left side is very unusual and has only been previously described once. The patient suffering this rare entity underwent appendectomy and repair of the hernia and experienced an uneventful postoperative recovery. The possibility of the presence of a situs inversus, or malrotation, as an underlying cause for the observed pathology was excluded by x-ray examinatio

    Novel mechanism of photoinduced reversible phase transitions in molecule-based magnets

    Full text link
    A novel microscopic mechanism of bi-directional structural changes is proposed for the photo-induced magnetic phase transition in Co-Fe Prussian blue analogues on the basis of ab initio quantum chemical cluster calculations. It is shown that the local potential energies of various spin states of Co are sensitive to the number of nearest neighbor Fe vacancies. As a result, the forward and backward structural changes are most readily initiated by excitation of different local regions by different photons. This mechanism suggests an effective strategy to realize photoinduced reversible phase transitions in a general system consisting of two local components.Comment: 4 pages, LaTex, 3 figures, to appear in Phys. Rev. Let

    Bulk and surface switching in Mn-Fe-based Prussian Blue Analogues

    Get PDF
    Many Prussian Blue Analogues are known to show a thermally induced phase transition close to room temperature and a reversible, photo-induced phase transition at low temperatures. This work reports on magnetic measurements, X-ray photoemission and Raman spectroscopy on a particular class of these molecular heterobimetallic systems, specifically on Rb0.81Mn[Fe(CN)6]0.95_1.24H2O, Rb0.97Mn[Fe(CN)6]0.98_1.03H2O and Rb0.70Cu0.22Mn0.78[Fe(CN)6]0.86_2.05H2O, to investigate these transition phenomena both in the bulk of the material and at the sample surface. Results indicate a high degree of charge transfer in the bulk, while a substantially reduced conversion is found at the sample surface, even in case of a near perfect (Rb:Mn:Fe=1:1:1) stoichiometry. Thus, the intrinsic incompleteness of the charge transfer transition in these materials is found to be primarily due to surface reconstruction. Substitution of a large fraction of charge transfer active Mn ions by charge transfer inactive Cu ions leads to a proportional conversion reduction with respect to the maximum conversion that is still stoichiometrically possible and shows the charge transfer capability of metal centers to be quite robust upon inclusion of a neighboring impurity. Additionally, a 532 nm photo-induced metastable state, reminiscent of the high temperature Fe(III)Mn(II) ground state, is found at temperatures 50-100 K. The efficiency of photo-excitation to the metastable state is found to be maximized around 90 K. The photo-induced state is observed to relax to the low temperature Fe(II)Mn(III) ground state at a temperature of approximately 123 K.Comment: 12 pages, 8 figure

    Numerical Study of a Mixed Ising Ferrimagnetic System

    Full text link
    We present a study of a classical ferrimagnetic model on a square lattice in which the two interpenetrating square sublattices have spins one-half and one. This model is relevant for understanding bimetallic molecular ferrimagnets that are currently being synthesized by several experimental groups. We perform exact ground-state calculations for the model and employ Monte Carlo and numerical transfer-matrix techniques to obtain the finite-temperature phase diagram for both the transition and compensation temperatures. When only nearest-neighbor interactions are included, our nonperturbative results indicate no compensation point or tricritical point at finite temperature, which contradicts earlier results obtained with mean-field analysis.Comment: Figures can be obtained by request to [email protected] or [email protected]

    Polygonal tessellations as predictive models of molecular monolayers

    Get PDF
    Molecular self-assembly plays a very important role in various aspects of technology as well as in biological systems. Governed by the covalent, hydrogen or van der Waals interactions - self-assembly of alike molecules results in a large variety of complex patterns even in two dimensions (2D). Prediction of pattern formation for 2D molecular networks is extremely important, though very challenging, and so far, relied on computationally involved approaches such as density functional theory, classical molecular dynamics, Monte Carlo, or machine learning. Such methods, however, do not guarantee that all possible patterns will be considered and often rely on intuition. Here we introduce a much simpler, though rigorous, hierarchical geometric model founded on the mean-field theory of 2D polygonal tessellations to predict extended network patterns based on molecular-level information. Based on graph theory, this approach yields pattern classification and pattern prediction within well-defined ranges. When applied to existing experimental data, our model provides an entirely new view of self-assembled molecular patterns, leading to interesting predictions on admissible patterns and potential additional phases. While developed for hydrogen-bonded systems, an extension to covalently bonded graphene-derived materials or 3D structures such as fullerenes is possible, significantly opening the range of potential future applications

    Theoretical investigation of the electronic structure of Fe(II) complexes at spin-state transitions

    Get PDF
    The electronic structure relevant to low spin (LS)high spin (HS) transitions in Fe(II) coordination compounds with a FeN6 core are studied. The selected [Fe(tz)6]2+(1) (tz=1H-tetrazole), [Fe(bipy)3]2+(2) (bipy=2,2’-bipyridine) and [Fe(terpy)2]2+ (3) (terpy=2,2’:6’,2’’-terpyridine) complexes have been actively studied experimentally, and with their respective mono-, bi-, and tridentate ligands, they constitute a comprehensive set for theoretical case studies. The methods in this work include density functional theory (DFT), time-dependent DFT (TD-DFT) and multiconfigurational second order perturbation theory (CASPT2). We determine the structural parameters as well as the energy splitting of the LS-HS states (ΔEHL) applying the above methods, and comparing their performance. We also determine the potential energy curves representing the ground and low-energy excited singlet, triplet, and quintet d6 states along the mode(s) that connect the LS and HS states. The results indicate that while DFT is well suited for the prediction of structural parameters, an accurate multiconfigurational approach is essential for the quantitative determination of ΔEHL. In addition, a good qualitative agreement is found between the TD-DFT and CASPT2 potential energy curves. Although the TD-DFT results might differ in some respect (in our case, we found a discrepancy at the triplet states), our results suggest that this approach, with due care, is very promising as an alternative for the very expensive CASPT2 method. Finally, the two dimensional (2D) potential energy surfaces above the plane spanned by the two relevant configuration coordinates in [Fe(terpy)2]2+ were computed both at the DFT and CASPT2 levels. These 2D surfaces indicate that the singlet-triplet and triplet-quintet states are separated along different coordinates, i.e. different vibration modes. Our results confirm that in contrast to the case of complexes with mono- and bidentate ligands, the singlet-quintet transitions in [Fe(terpy)2]2+ cannot be described using a single configuration coordinate
    corecore