575 research outputs found
Recommended from our members
A preliminary synthesis of major scientific results during the SALSA program
The objective of this paper is to provide an overview of the primary results of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program in the context of improvements to our overall understanding of hydrologic, ecologic, and atmospheric processes and their interactions in a semi-arid basin. The major findings and future research needs associated with the different core components of the program are emphasized. First, remote-sensing investigations are discussed, especially those directed toward taking full advantage of the capabilities of the new generation of satellites (ERS2/ATSR2, VEGETATION, LANDSAT7, NASA-EOS). Second, we discuss parameterization of the water and energy fluxes in arid and semi-arid regions, with special emphasis on methods to aggregate these fluxes from patch scale to grid scale. Third, we address the issues related to grassland ecology and competition for water between native grass and invasive mesquite species. Fourth, findings related to the interactions between surface water, ground water, and vegetation in a semi-arid riparian system are discussed. Next, an assessment of land use and land cover change over the entire basin over a quarter century is reviewed. Finally, unsolved issues and the needs for further research are outlined
From error bounds to the complexity of first-order descent methods for convex functions
This paper shows that error bounds can be used as effective tools for
deriving complexity results for first-order descent methods in convex
minimization. In a first stage, this objective led us to revisit the interplay
between error bounds and the Kurdyka-\L ojasiewicz (KL) inequality. One can
show the equivalence between the two concepts for convex functions having a
moderately flat profile near the set of minimizers (as those of functions with
H\"olderian growth). A counterexample shows that the equivalence is no longer
true for extremely flat functions. This fact reveals the relevance of an
approach based on KL inequality. In a second stage, we show how KL inequalities
can in turn be employed to compute new complexity bounds for a wealth of
descent methods for convex problems. Our approach is completely original and
makes use of a one-dimensional worst-case proximal sequence in the spirit of
the famous majorant method of Kantorovich. Our result applies to a very simple
abstract scheme that covers a wide class of descent methods. As a byproduct of
our study, we also provide new results for the globalization of KL inequalities
in the convex framework.
Our main results inaugurate a simple methodology: derive an error bound,
compute the desingularizing function whenever possible, identify essential
constants in the descent method and finally compute the complexity using the
one-dimensional worst case proximal sequence. Our method is illustrated through
projection methods for feasibility problems, and through the famous iterative
shrinkage thresholding algorithm (ISTA), for which we show that the complexity
bound is of the form where the constituents of the bound only depend
on error bound constants obtained for an arbitrary least squares objective with
regularization
Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function.
peer reviewedLow-density lipoprotein receptor-related protein-1 (LRP-1) is a plasma membrane scavenger and signaling receptor, composed of a large ligand-binding subunit (515-kDa α-chain) linked to a shorter transmembrane subunit (85-kDa β-chain). LRP-1 cell-surface level and function are controlled by proteolytic shedding of its ectodomain. Here, we identified ectodomain sheddases in human HT1080 cells and demonstrated regulation of the cleavage by cholesterol by comparing the classical fibroblastoid type with a spontaneous epithelioid variant, enriched ∼2-fold in cholesterol. Two membrane-associated metalloproteinases were involved in LRP-1 shedding: a disintegrin and metalloproteinase-12 (ADAM-12) and membrane-type 1 matrix metalloproteinase (MT1-MMP). Although both variants expressed similar levels of LRP-1, ADAM-12, MT1-MMP, and specific tissue inhibitor of metalloproteinases-2 (TIMP-2), LRP-1 shedding from epithelioid cells was ∼4-fold lower than from fibroblastoid cells. Release of the ectodomain was triggered by cholesterol depletion in epithelioid cells and impaired by cholesterol overload in fibroblastoid cells. Modulation of LRP-1 shedding on clearance was reflected by accumulation of gelatinases (MMP-2 and MMP-9) in the medium. We conclude that cholesterol exerts an important control on LRP-1 levels and function at the plasma membrane by modulating shedding of its ectodomain, and therefore represents a novel regulator of extracellular proteolytic activities.-Selvais, C., D'Auria, L., Tyteca, D., Perrot, G, Lemoine, P., Troeberg, L., Dedieu, S., Noël, A., Nagase, H., Henriet, P., Courtoy, P. J., Marbaix, E., Emonard, H. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function
An update on the Hirsch conjecture
The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to
George Dantzig. It states that the graph of a d-dimensional polytope with n
facets cannot have diameter greater than n - d.
Despite being one of the most fundamental, basic and old problems in polytope
theory, what we know is quite scarce. Most notably, no polynomial upper bound
is known for the diameters that are conjectured to be linear. In contrast, very
few polytopes are known where the bound is attained. This paper collects
known results and remarks both on the positive and on the negative side of the
conjecture. Some proofs are included, but only those that we hope are
accessible to a general mathematical audience without introducing too many
technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2
and put into the appendix arXiv:0912.423
Agrometerological study of semi-arid areas : an experiment for analysing the potential of time series of FORMOSAT-2 images (Tensift-Marrakech plain)
Earth Observing Systems designed to provide both high spatial resolution (10m) and high capacity of time revisit (a few days) offer strong opportunities for the management of agricultural water resources. The FORMOSAT-2 satellite is the first and only satellite with the ability to provide daily high-resolution images over a particular area with constant viewing angles. As part of the SudMed project, one of the first time series of FORMOSAT-2 images has been acquired over the semi-arid Tensift-Marrakech plain. Along with these acquisitions, an experimental data set has been collected to monitor land-cover/land-use, soil characteristics, vegetation dynamics and surface fluxes. This paper presents a first analysis of the potential of these data for agrometerological study of semi-arid areas
Artificial reefs: from ecological processes to fishing enhancement tools
info:eu-repo/semantics/publishedVersio
The Double Star Plasma Electron and Current Experiment
The Double Star Project is a collaboration between Chinese and European space agencies, in which two Chinese magnetospheric research spacecraft, carrying Chinese and European instruments, have been launched into equatorial (on 29 December 2003) and polar (on 25 July 2004) orbits designed to enable complementary studies with the Cluster spacecraft. The two Double Star spacecraft TC-1 and TC-2 each carry a Double Star Plasma Electron and Current Experiment (PEACE) instrument. These two instruments were based on Cluster Flight Spare equipment, but differ from Cluster instruments in two important respects. Firstly, a Double Star PEACE instrument has only a single sensor, which must be operated in a manner not originally envisaged in the Cluster context in order to sample the full range of energies. Secondly, the DPU hardware was modified and major changes of onboard software were implemented, most notably a completely different approach to data compression has been adopted for Double Star, which allows high resolution 3-dimensional distributions to be transmitted almost every spin, a significant improvement over Cluster. This paper describes these instruments, and includes examples of data collected in various magnetospheric regions encountered by the spacecraft which have been chosen to illustrate the power of combined Double Star and Cluster measurements
Role of the hyporheic heterotrophic biofilm on transformation and toxicity of pesticides
The role of heterotrophic biofilm of water–sediment interface in detoxification processes was tested in abiotic and biotic conditions under laboratory conditions. Three toxicants, a herbicide (Diuron), a fungicide (Dimethomorph) and an insecticide (Chlorpyrifos-ethyl) have been tested in water percolating into columns reproducing hyporheic sediment. The detoxification processes were tested by comparing the water quality after 18 days of percolation with and without heterotrophic biofilm. Tested concentrations were 30 mg.Lx1 of Diuron diluted in 0.1% dimethyl sulfoxide (DMSO), 2 mg.Lx1 of Dimethomorph and 0.1 mg.Lx1 of Chlorpyrifos-ethyl. To characterise the detoxification efficiency of the system, we performed genotoxicity bioassays in amphibian larvae and rotifers and measured the respiration and denitrification of sediments. Although the presence of biofilm increased the production of N-(3,4 dichlorophenyl)-N-(methyl)-urea, a metabolite of diuron, the toxicity did not decrease irrespective of the bioassay. In the presence of biofilm, Dimethomorph concentrations decreased compared with abiotic conditions, from 2 mg.Lx1 to 0.4 mg.Lx1 after 18 days of percolation. For both Dimethomorph and Chlorpyrifos-ethyl additions, assessment of detoxification level by the biofilm depended on the test used: detoxification effect was found with amphibian larvae bioassay and no detoxification was observed with the rotifer test. Heterotrophic biofilm exerts a major influence in the biochemical transformation of contaminants such as pesticides, suggesting that the interface between running water and sediment plays a role in self-purification of stream reaches
Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes
International audienceSatellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc.) and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc.) are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART) model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR) waveform and photon counting signals
- …
