202 research outputs found

    Satisfiability of CTL* with constraints

    Full text link
    We show that satisfiability for CTL* with equality-, order-, and modulo-constraints over Z is decidable. Previously, decidability was only known for certain fragments of CTL*, e.g., the existential and positive fragments and EF.Comment: To appear at Concur 201

    Modal Logics with Hard Diamond-free Fragments

    Full text link
    We investigate the complexity of modal satisfiability for certain combinations of modal logics. In particular we examine four examples of multimodal logics with dependencies and demonstrate that even if we restrict our inputs to diamond-free formulas (in negation normal form), these logics still have a high complexity. This result illustrates that having D as one or more of the combined logics, as well as the interdependencies among logics can be important sources of complexity even in the absence of diamonds and even when at the same time in our formulas we allow only one propositional variable. We then further investigate and characterize the complexity of the diamond-free, 1-variable fragments of multimodal logics in a general setting.Comment: New version: improvements and corrections according to reviewers' comments. Accepted at LFCS 201

    On the Complexity of Temporal-Logic Path Checking

    Full text link
    Given a formula in a temporal logic such as LTL or MTL, a fundamental problem is the complexity of evaluating the formula on a given finite word. For LTL, the complexity of this task was recently shown to be in NC. In this paper, we present an NC algorithm for MTL, a quantitative (or metric) extension of LTL, and give an NCC algorithm for UTL, the unary fragment of LTL. At the time of writing, MTL is the most expressive logic with an NC path-checking algorithm, and UTL is the most expressive fragment of LTL with a more efficient path-checking algorithm than for full LTL (subject to standard complexity-theoretic assumptions). We then establish a connection between LTL path checking and planar circuits, which we exploit to show that any further progress in determining the precise complexity of LTL path checking would immediately entail more efficient evaluation algorithms than are known for a certain class of planar circuits. The connection further implies that the complexity of LTL path checking depends on the Boolean connectives allowed: adding Boolean exclusive or yields a temporal logic with P-complete path-checking problem

    On the complexity of resource-bounded logics

    Get PDF
    We revisit decidability results for resource-bounded logics and use decision problems on vector addition systems with states (VASS) in order to establish complexity characterisations of (decidable) model checking problems. We show that the model checking problem for the logic RB+-ATL is 2EXPTIME-complete by using recent results on alternating VASS (and in EXPTIME when the number of resources is bounded). Moreover, we establish that the model checking problem for RBTL is EXPSPACE-complete. The problem is decidable and of the same complexity for RBTL*, proving a new decidability result as a by-product of the approach. When the number of resources is bounded, the problem is in PSPACE. We also establish that the model checking problem for RB+-ATL*, the extension of RB+-ATL with arbitrary path formulae, is decidable by a reduction to parity games for single-sided VASS (a variant of alternating VASS). Furthermore, we are able to synthesise values for resource parameters. Hence, the paper establishes formal correspondences between model checking problems for resource bounded logics advocated in the AI literature and decision problems on alternating VASS, paving the way for more applications and cross-fertilizations

    NEXP-completeness and Universal Hardness Results for Justification Logic

    Full text link
    We provide a lower complexity bound for the satisfiability problem of a multi-agent justification logic, establishing that the general NEXP upper bound from our previous work is tight. We then use a simple modification of the corresponding reduction to prove that satisfiability for all multi-agent justification logics from there is hard for the Sigma 2 p class of the second level of the polynomial hierarchy - given certain reasonable conditions. Our methods improve on these required conditions for the same lower bound for the single-agent justification logics, proven by Buss and Kuznets in 2009, thus answering one of their open questions.Comment: Shorter version has been accepted for publication by CSR 201

    Quantitative Regular Expressions for Arrhythmia Detection Algorithms

    Full text link
    Motivated by the problem of verifying the correctness of arrhythmia-detection algorithms, we present a formalization of these algorithms in the language of Quantitative Regular Expressions. QREs are a flexible formal language for specifying complex numerical queries over data streams, with provable runtime and memory consumption guarantees. The medical-device algorithms of interest include peak detection (where a peak in a cardiac signal indicates a heartbeat) and various discriminators, each of which uses a feature of the cardiac signal to distinguish fatal from non-fatal arrhythmias. Expressing these algorithms' desired output in current temporal logics, and implementing them via monitor synthesis, is cumbersome, error-prone, computationally expensive, and sometimes infeasible. In contrast, we show that a range of peak detectors (in both the time and wavelet domains) and various discriminators at the heart of today's arrhythmia-detection devices are easily expressible in QREs. The fact that one formalism (QREs) is used to describe the desired end-to-end operation of an arrhythmia detector opens the way to formal analysis and rigorous testing of these detectors' correctness and performance. Such analysis could alleviate the regulatory burden on device developers when modifying their algorithms. The performance of the peak-detection QREs is demonstrated by running them on real patient data, on which they yield results on par with those provided by a cardiologist.Comment: CMSB 2017: 15th Conference on Computational Methods for Systems Biolog

    Reasoning with global assumptions in arithmetic modal logics

    Get PDF
    We establish a generic upper bound ExpTime for reasoning with global assumptions in coalgebraic modal logics. Unlike earlier results of this kind, we do not require a tractable set of tableau rules for the in- stance logics, so that the result applies to wider classes of logics. Examples are Presburger modal logic, which extends graded modal logic with linear inequalities over numbers of successors, and probabilistic modal logic with polynomial inequalities over probabilities. We establish the theoretical upper bound using a type elimination algorithm. We also provide a global caching algorithm that offers potential for practical reasoning

    Interprocedural Reachability for Flat Integer Programs

    Full text link
    We study programs with integer data, procedure calls and arbitrary call graphs. We show that, whenever the guards and updates are given by octagonal relations, the reachability problem along control flow paths within some language w1* ... wd* over program statements is decidable in Nexptime. To achieve this upper bound, we combine a program transformation into the same class of programs but without procedures, with an Np-completeness result for the reachability problem of procedure-less programs. Besides the program, the expression w1* ... wd* is also mapped onto an expression of a similar form but this time over the transformed program statements. Several arguments involving context-free grammars and their generative process enable us to give tight bounds on the size of the resulting expression. The currently existing gap between Np-hard and Nexptime can be closed to Np-complete when a certain parameter of the analysis is assumed to be constant.Comment: 38 pages, 1 figur

    Complexity and Expressivity of Branching- and Alternating-Time Temporal Logics with Finitely Many Variables

    Full text link
    We show that Branching-time temporal logics CTL and CTL*, as well as Alternating-time temporal logics ATL and ATL*, are as semantically expressive in the language with a single propositional variable as they are in the full language, i.e., with an unlimited supply of propositional variables. It follows that satisfiability for CTL, as well as for ATL, with a single variable is EXPTIME-complete, while satisfiability for CTL*, as well as for ATL*, with a single variable is 2EXPTIME-complete,--i.e., for these logics, the satisfiability for formulas with only one variable is as hard as satisfiability for arbitrary formulas.Comment: Prefinal version of the published pape

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system
    corecore